JOURNAL

Advanced search

Linux Journal Issue #58/February 1999

Fa Jasx Daiouton on CO-RCH MR 558000 en-Sen Gelals fralde
[ln [[!! { FRRANTY 1 (370% 9

JOURNAL Linux

The Abcll Migasiw of the G Cammcity

COAS; Caldera Open Administration System
Wirtual Network Computing Z
Hunting Hurricanes '
Cspund for Linuy, - °
KOE aqd GNOME

Wearahle

II Computers

Features

COAS: A Flexible Approach to System Administration Tools by Olaf

Kirch
Caldera is working on a new easy-to-use configuration tool for
Linux. Mr. Kirch gives us the details.

Csound for Linux by David Phillips
Mr. Phillips discusses some history as well as what's happening
now in the Linux Csound world.

Hunting Hurricanes by C. Wayne Wright and Edward J. Walsh
The authors tell us about hunting hurricane using the Scanning
Radar Altimeter based on the Linux system and analyzing the
data with Yorick.

University of Toronto WearComp Linux Project by Dr. Steve Mann
Dr. Mann describes his WearComp (“Wearable Computer”)
invention and how it has evolved into the same kind of
philosophical basis for self determination and mastery over
one's own destiny that is characteristic of the Linux operating
system that currently runs on WearComp.

News & Articles

Virtual Network Computing by Brian Harvey
Mr. Harvey tells us about virtual network computing and how to
set it up to control MS Windows Application from Linux.
Configuring ATM Networks by Wayne J. Salamon

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1
https://secure2.linuxjournal.com/ljarchive/LJ/058/3019.html
https://secure2.linuxjournal.com/ljarchive/LJ/058/3187.html
https://secure2.linuxjournal.com/ljarchive/LJ/058/3212.html
https://secure2.linuxjournal.com/ljarchive/LJ/058/3229.html
https://secure2.linuxjournal.com/ljarchive/LJ/058/2969.html
https://secure2.linuxjournal.com/ljarchive/LJ/058/3005.html

This article describes how to configure Linux-based PCs and an
asynchronous transfer mode (ATM) switch to build on ATM
network.
The GNOME Project by Miguel de Icaza
What is GNOME and where is it heading? Miguel tells us all.
KDE: The Highway Ahead by Kalle Dalheimer
In this article, Mr. Dalheimer describes some of the plans being
made for future versions of KDE.

Reviews
P-Synch: Changing the Way We Change Passwords by Tim Parker
Columns

Linux Apprentice The login Process by Andy Vaught
System Administration Caching the Web, Part 2 by David
Guerrero
This month Mr. Guerrero tells us about the definitive proxy-cache
server, Squid.
At the Forge Creating a Web-based BBS, Part 2 by Reuven M.
Lerner
Mr. Lerner continues to look at the bulletin board system,
examining the code that works with individual messages.
Focus on Software by David A. Bandel

Departments

Letters to the Editor
Letters to the Editor More Letters to the Editor
Guest Editorial Software Libre and Commercial Viability by
Alessandro Rubini
Software Libre and Commercial Viability Mr. Rubini gives us his
opinion of the Open Source movement.
Stop the Presses by Marjorie Richardson
Announcements by Sun and Troll Tech
Best of Technical Support
New Products

Strictly On-line

Color Reactiveness on the Desktop by Bowie Poag
Mr. Poag describes the InSight project which is designing a
desktop where color is used to inform the user of what is
happening with his applications.

Building Network Management Tools with Tcl/Tk by Syd Logan

L] Interviews Informix's Janet Smith by Marjorie Richardson

Archive Index

Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

https://secure2.linuxjournal.com/ljarchive/LJ/058/3139.html
https://secure2.linuxjournal.com/ljarchive/LJ/058/3216.html
https://secure2.linuxjournal.com/ljarchive/LJ/058/3040.html
https://secure2.linuxjournal.com/ljarchive/LJ/058/3121.html
https://secure2.linuxjournal.com/ljarchive/LJ/058/3208.html
https://secure2.linuxjournal.com/ljarchive/LJ/058/3252.html
https://secure2.linuxjournal.com/ljarchive/LJ/058/3285.html
https://secure2.linuxjournal.com/ljarchive/LJ/058/3284.html
https://secure2.linuxjournal.com/ljarchive/LJ/058/lte58more.html
https://secure2.linuxjournal.com/ljarchive/LJ/058/3257.html
https://secure2.linuxjournal.com/ljarchive/LJ/058/3283.html
https://secure2.linuxjournal.com/ljarchive/LJ/058/3253.html
https://secure2.linuxjournal.com/ljarchive/LJ/058/3254.html
https://secure2.linuxjournal.com/ljarchive/LJ/058/3039.html
https://secure2.linuxjournal.com/ljarchive/LJ/058/3104.html
https://secure2.linuxjournal.com/ljarchive/LJ/058/3153.html
https://secure2.linuxjournal.com/ljarchive/LJ/058/3153.html
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

JOURNAL

Advanced search

COAS: A Flexible Approach to System Administration
Tools

Olaf Kirch

Issue #58, February 1999

Caldera is working on a new easy-to-use configuration tool for Linux. Mr. Kirch
gives us the details.

COAS stands for Caldera Open Administration System. It will be incorporated as
the main configuration tool in future versions of the OpenLinux distribution.

For those who have never used OpenLinux, the tool we have been using for
quite a while is called LISA (Linux Installation and System Administration), which
is basically one huge shell script using a modified version of the dialog tool to
interact with the user. When we felt it was time to move on to something new,
we of course looked at what was already available. The only viable option at
that time seemed to be LinuxConf, which had quite a ways to go before it would
become useful. Since that time it has become much better, but because we had
already started work on COAS, we decided to stick with it. Of course, we believe
our concept is better.

The source code to COAS is released under the GNU General Public License. We
feel our work might be useful to the Linux community as a whole and we want
to invite interested programmers, administrators and users to participate in its
development by offering comments contributing patches or even modules.

Vertical Modularity

The main idea behind COAS is not to provide just another administration tool,
but an entire framework for writing one. From the start, we wanted it to be a
modular application where assumptions about such things as system data
representation, file locations and dependencies are separated as much as
possible from user dialogs and vice versa. Ambitious as this goal may appear,

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

our main interest was the ability to easily adapt the tool to changes in the
underlying platform and in porting it to other Linux platforms.

| like to call this vertical modularity, because it breaks up the task of system
administration into three layers. At the lowest level are native system data files,
such as /etc/passwd, /etc/hosts or files that define the IP address for a
particular network interface.

On top of that, COAS implements an internal representation as a kind of
database. If this term made you jump in your seat and shout, “Oh no, Mr. Bill,
not a Linux Registry!”, please be assured that this is definitely not what we want
it to be. COAS is supposed to be vi-administrator friendly. We want users to be
able to switch between COAS and vi (or Emacs) administration, because even
though we hope COAS will be useful for everyday tasks, it cannot cover each
and every feature of a system component. (Consider the configuration monster
incarnate, sendmail--you can spend as much time writing configuration
software for it as Eric Allman keeps churning out new features.)

The native system files will remain the primary source of information. The
COAS data model is strictly a run-time representation of system data that
attempts to hide the on-disk representation from the upper layers. For
instance, an administration module for the BIND server should not have to
bother about where DNS zone files are located and how they are to be parsed;
all it needs is the list of DNS zones this server is a primary or secondary name
server for and the records they contain.

Having an abstract data representation also allows for alternate data access
mechanisms. For example, our database engine can store a change log of an
administration session to a file, which could then be distributed to other
machines, thus allowing for bulk updates. Also, there's the vague idea that
COAS might one day support remote access via LDAP or SNMP.

The top-most layer is the user interaction code. This code drives the dialog with
the user and controls what information is displayed to the user at what time. It
uses a standard set of dialogs, provides on-line help, etc. We decided to use a
scripting language, Python, at this layer in order to allow for rapid prototyping.
In addition to this, wrapping all lower-level functionality in Python classes and
functions provides an additional level of insulation that restricts the number of
tricks a programmer can pull. This may seem like a disadvantage to the hackers
among you, but it is truly a big plus when it comes to code maintenance.

Horizontal Modularity

You may have guessed from my choice of the term “vertical modularity” that
there is also a horizontal one, and so there is. Consider the following scenario:

a security problem or other misfeature requires you to update a component of
your system, such as the BIND name server. Alas, the update is from version
4.9 to version 8.2, which uses an entirely different configuration file format. We
could now ask you to install an all-new version of our administration tool in
order to accommodate the new configuration file format. On one hand, that is
costly in terms of bandwidth. On the other hand, making sure the tool operates
properly with all possible combinations of updates applied or not applied
would be rather time-consuming for us. The ideal solution would be to package
the DNS server administration module alongside our BIND update.

We are attempting to accomplish the following: COAS lets you rip out an entire
module, including the data model definition, Python code, message catalogs
and so on, and replace it with a different version. We have nicknamed these
CLAMSs, which is short for Caldera Linux Administration Module (we invented
the acronym first and then decided on its meaning, in case you were
wondering).

Data Model

Let's take a closer look at the internal data representation. All information is
stored in a tree, with each node having an individual name. For instance, the
node containing the password of the root user is named
system.accounts.users.0.password. If you're familiar with SNMP, think of the
way SNMP variables are named.

Nodes can have different types; e.g., system is a directory, users is a list and
password is a scalar. Scalar nodes can have various constraints attached to
them; for instance, a string may be required to match a regular expression or
contain only values from a predefined set of choices. You can also attach your
own parsing and representation functions (written in C) to a scalar type,
creating custom types that do such things as convert date strings, e.g., Jun 12 or
tomorrow, to UNIX time.

All this information is provided by the so-called schema. The schema acts as a
sort of blueprint for the data model in much the same way an SNMP MIB
definition describes the types and organization of entities for SNMP.

For instance, the definition of the mouse parameters might look like this:

MODULE "PERIPHERALS/MOUSE"

MSGCATALOG "peripherals/mouse"

TYPEDEF DevicePathName STRING MATCHES
"/dev/[a-z0-9]*"

TYPEDEF MouseProtocol STRING IN CHOICE {
"Busmouse", "MouseSystems",
"Mouseman", "Microsoft",

}
device RECORD {

model STRING
protocol MouseProtocol
deviceFile DevicePathName DEFAULT
"/dev/mouse"
emulate3btn BOOLEAN DEFAULT "false"
1

This creates a record named mouse containing five scalar nodes. For instance,
model is a plain string variable, while deviceFile is a special string type whose
definition is shown above the record. The first two lines contain some syntactic
sugar that need not concern us at the moment.

%Those funky strings (|":MOUSE_EMULATE_NONE:"|)
%are tags for the COAS message catalogs.

This definition would be stored in a file named peripherals/mouse.schema
(usually below /usr/lib/coas/schema) so that the mouse configuration would be
accessible by the name peripherals.mouse.device.

When accessing data items, COAS instantiates the portions of the instance tree
from the schema definition and populates the data by invoking so-called
“mappers”. These mappers are responsible for parsing and writing back system
files, locking them if necessary. Usually, they are written in C++ and kept in
shared libraries loaded on demand. The most recent release also supports
mappers written in Python.

In the case of the mouse device, there is no standard location where this
information is stored. On a Red Hat box, for example, it is kept in /etc/
sysconfig/mouse, a file which contains a list of shell variable assignments. COAS
already has a general-purpose mapper for this type of file (it turns out that
about 80% of all system files are quite close to four or five standard formats),
so all that is left is defining the mapping. This is done by the so-called platform
repository, where we might enter code like this:

peripherals.mouse.device {
mapper builtin.sysconfig
path /etc/sysconfig/mouse
relation MOUSETYPE :model:\
PROTO:protocol:\
DEVICE:deviceFile:\
XEMU3:emulate3btn(map=/no=false, yes=true/)
}

The mapper keyword associates the mapper specified with the mouse device
node. When accessing the device node, the first time, COAS detects this and
invokes the mapper in order to populate the tree below the mouse device
node. The mapper retrieves the path parameter and reads the file specified.
The relation parameter tells the mapper which shell variables within the file
correspond to which data model nodes.

The same thing happens when you have modified a protocol (e.g., the mouse)
and invoke the device node's commit function. The data engine will invoke the
mapper in order to write the data back to the file. Again, the mapper will use
the specified relation to determine which data model values will be assigned to
which shell variables. Note that in an act of vi-administrator friendliness, the
mapper does not touch shell variables it does not know about and tries to
preserve comments as well as it can.

The platform information is usually installed by merging it with the main COAS
platform definition, which resides in /usr/lib/coas/repository.

User Interaction

Having written and installed the above files, you can already display and modify
the mouse configuration using COAS. For example, COAS comes with small
utilities such as coas dump and coas change that let you dump portions of the
data tree or modify individual nodes. You can even write Python scripts that
perform more complex operations on your data.

However, the ultimate goal (at least for us) is a Python module that interacts
with the user, guiding him through the administration task. The module sits on
top of the database engine and operates exclusively on the abstract data
representation. It displays data to the user, selects which items are to be
edited, provides on-line help, etc.

Why Python? Well, a very early prototype used Tcl as the scripting language, but
for various reasons it didn't work too well. In contrast to Tcl, Python has fairly
good object support and at least as good an extension mechanism. The other
candidate was Perl, but we decided against it because it is so easy to write
horrible code in Perl.

Communication with the user happens via an abstract user interface API
written in C++, which currently supports a curses and a Qt front-end. Work on
an extended Qt front-end that takes advantage of features provided by KDE is
in progress. Of course, in order to be able to use this APl from Python, a Python
wrapper is provided.

The user interface provides a limited but useful set of dialogs: notice/question
dialogs consisting of a text and a few buttons; list dialogs (single- and multi-
selection, with or without check boxes, etc); prompt dialogs (containing edit
fields for one or more scalar values); and table dialogs (which display data in a
table, allowing in-place editing).

Listing 1

https://secure2.linuxjournal.com/ljarchive/LJ/058/3019l1.html

For instance, a minimal module for editing the mouse configuration would look
like Listing 1 (some of the Python fluff, such as import statements, is not
shown). For those not familiar with Python, this code defines the class Mouse,
derived from the CLAM class defined in module clam. The {__init__} method is
Python's way of declaring a constructor.

The method run is invoked by COAS. The first thing it does is look up the data
model node for the mouse device. As described above, this step will trigger the
parsing of the configuration file into the internal data representation.

Next, a prompt dialog is created and three edit fields are added for the mouse's
model, protocol and device file. The last few lines are the somewhat standard
dialog loop. Depending on whether the user terminates the dialog by pressing
the Okay or Cancel button, either the commit or cancel method (inherited from
the CLAM base class) is invoked, which displays a small question dialog along
the lines of “Do you really want to save/cancel?”

‘What about Labels?

The first thing that will probably strike you as odd about this example is that it
has no label strings anywhere. Nevertheless, the dialog is supposed to have a
title, edit fields are supposed to have a label to their left, etc.

The answer is that COAS generates NLS strings for you out of the information it
has. For instance, when creating the prompt dialog, we inconspicuously passed
the string mouse into the function. As a consequence, COAS will create tags
such as |":MOUSE_TITLE:"| for the dialog's title and attempt to look it up in the
module's message catalog. (The message catalog name was specified in the
class constructor.) Likewise, for the protocol edit field, it will generate the tag
|":MOUSE_PROTOCOL_LABEL:"|. All you need to do is write the message
catalog, mapping these funky strings to intelligible English (or French, German,
etc.) and install the file.

Editing Data

Looking at the sample code above, you may also have thought: | understand
where they put the data in the dialog, but how do they put it back into the data
model?

This is the interesting part about the data editing process. If you have ever
programmed Motif, you know how tedious it can be to extract the value to be
edited from the data model, put it into the dialog and write the resulting value
back to the data model when the user hits the OK button.

The approach taken by COAS is to tie data model nodes into the dialog directly
and let the dialog select an appropriate widget type (string, combo box, toggle
button, spin button, etc.). When the user provides a new value, the dialog will
automatically check the value's syntax against data model constraints and write
it back into the data model.

In our example, the dialog would create a simple string edit field for
deviceName, a pop-up list for protocol (since it is limited to a set of choices) and
a toggle button for emulation.

What's more, this mechanism offers you easy-to-use context help for each
input field, bound to the f2 key. Adding this type of help to a data item is as
easy as adding the HELP attribute to the data definition in the schema file:

device RECORD {
model STRING HELP "HELP_MODEL"
protocol MouseProtocol HELP "HELP_PROTOCOL"

3

These help messages will be looked up in the message catalog associated with
the schema file (remember the MSGCATALOG keyword in the schema file?) and
displayed in a pop-up dialog whenever the user presses f2.

Of course, every scheme you devise has a drawback. In this case, it is how to
cancel changes made during the execution of the dialog. When the user
presses the Cancel button, he wants all changes to go away.

This is where the marker object comes into play. The data node's getMarker
method obtains a marker for the node's change log (called a journal in COAS
lingo). When the user requests a discard of all changes, the CLAM base class
invokes self.mouse.cancel(marker), which reverts all changes made after the
marker object was obtained.

Where's the Beer? er, Beef?

| have to admit that the above example, in its simplicity, is a bit deceptive. What
I'm showing here is the simplest version of a dialog. In fact, what you see here
is just a glorious interface to the configuration file because it does not offer the
user any help or guidance. A good dialog would automatically choose the
appropriate device file when a selection is made (e.g., a bus mouse) and keep
the user from enabling three-button emulation for mice that already have three
buttons. As a consequence, your average COAS module will have a lot more
than those 20-odd lines in the example above.

However, the greatest advantage COAS offers in this context is that it relieves
you of the usual hassle when working with a GUI and lets you concentrate on
the data flow instead.

Dependency Model

Are You Curious?

If this article has piqued your interest and you would like to take a closer look at
COAS, you can find out more about it on http://www.coas.org/ and http://
developer.coas.org/. If you want to participate in the development of COAS,
don't hesitate to contact me.

All listings referred to in this article are available by anonymous download in
the file ftp.linuxjournal.com/pub/lj/listings/issue58/3019.tgz.

days and has authored the Linux Network Administrator's Guide as well as
various pieces of software for Linux. He has been the principal maintainer of
the Linux NFS code for several years and has been working for Caldera since
1997.

Archive Index Issue Table of Contents

Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

https://secure2.linuxjournal.com/ljarchive/LJ/058/3019s1.html
https://secure2.linuxjournal.com/ljarchive/LJ/listings/058/3019.tgz
mailto:okir@caldera.de
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/058/toc058.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

JOURNAL

Advanced search

Csound for Linux

David Phillips

Issue #58, February 1999

Mr. Phillips discusses some history as well as what's happening now in the
Linux Csound world.

Csound is a music composition and sound programming language originally
written by Barry Vercoe at MIT. As Nick Bailey pointed out in his October 1998
LJ article “Sculptor: A Real Time Phase Vocoder”, Barry's original MUSIC11
program was eventually ported from PDP-11 assembler to UNIX C, where it
became Csound. MUSIC11 was derived from the pioneering MusicV program by
Max Mathews, perhaps the most revered “Founding Father” of computer music
technology.

One of MusicV's major innovations was the implementation of the unit
generator, a “black box” concept that allowed great extensibility to the
language. A unit generator can be a signal generator or modifier, a patching
opcode, a sensor, or it can provide sound file I/0 and signal display types.
Csound has evolved into a notable successor to Music V, quickly
accommodating new synthesis methods and DSP algorithms. It is now at the
cutting edge of modern computer music software. Linux Csound has done
more than simply kept pace with that evolution—it offers capabilities not found
with versions available on other platforms.

Enter Linux

In 1996, | wanted to try out the Linux OS. | knew certain software synthesis
languages would run under it, and those languages were not available for DOS/
Windows machines. Although Csound does indeed run under Microsoft
operating systems (and many others), | was interested in seeing how well it
would run under Linux. Jonathan Mohr had already added the real-time audio
support for Linux, but | immediately discovered | had stumbled upon another
big “DIY” (do it yourself) project. The source code available from the Bath, UK
FTP site (the primary repository for the “canonical” packages) was a general

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

UNIX package, without Linux-specific Makefiles or any other compilation
amenities. Although | was a novice at both Linux and the C programming
language, | jumped in and started thrashing. With good assistance from John
Fitch (maintainer of the Bath site and the canonical sources) and the helpful
members of the Csound mail list, | finally produced a working set of Makefiles
for the entire source tree. | soon had a fast Linux Csound with full support for X
displays, real-time audio output and all the current opcodes. Professor Burton
Beerman kindly provided an FTP site for my Linux Csound packages on his
MusTec server at Bowling Green State University, and for two years |
maintained the public version on that site and at Bath.

CSound in a Nutshell

Linux CSound: the Plot Thickens

Early in 1998, | received a message from Professor Nicola Bernardini at AIMI
(Associazione di Informatica Musicale Italiana). He had thoroughly rewritten the
Linux Csound Makefiles and wondered if | might be interested in adding them
to the source package. His offer came at a good time, as | knew the code
maintenance needed a more solid structure. Nicola's expertise was just the
right factor appearing at just the right moment. His Makefiles enabled me to
quickly prepare a variety of distribution packages (with or without X support,
static build or shared lib, real-time audio enabled/disabled, etc.) and compile a
more complete build of the source tree. Most importantly, the Makefiles
created libcsound.so, a shared library which drastically reduced the binary's
memory footprint (from about 450KB to less than 20KB).

Real-time Linux CSound

Around the same time, developer Gabriel Maldonado wrote a set of MIDI
output opcodes, allowing Csound to be used as a MIDI composition/control
instrument. Csound already accommodated MIDI input, directly from /dev/midi
or from a Type 0 Standard MIDI File (see Real-time Midi Input). Gabriel's
opcodes are different: they permit exploration into MIDI composition
algorithms simultaneously with the rest of Csound's real-time 1/0.
Hypothetically, it would be possible to have a MIDI device controlling one
Csound instrument while another instrument sends its output to devaudio.
Given support for a full-duplex sound card, it should even be possible to have
asynchronous I/0 for both the MIDI and the audio ports.

Alas, no routines had been written for Linux Csound that would accept the data
from Gabriel's opcodes and send it out to the MIDI port. After studying John
Fitch's code for the Windows Csound MIDI output handler, | decided to try
writing the appropriate calls for Linux. | fumbled around with the OSS/Free API
and eventually wrote the code needed to activate the requested MIDI interface

https://secure2.linuxjournal.com/ljarchive/LJ/058/3187s2.html
https://secure2.linuxjournal.com/ljarchive/LJ/058/3187s3.html
https://secure2.linuxjournal.com/ljarchive/LJ/058/3187s4.html

and accept the control data sent to it from the Maldonado opcodes. Linux
Csound was as up-to-date as any other version, and the necessary code for
MIDI output had been trivial to write, consisting primarily of a few calls to the
sound card APl macros.

The CVS Repository

The next major step taken for Linux Csound was the establishment of a CVS
repository. | had been complaining to Nicola that | found myself constantly
checking everything coming to me in the canonical UNIX package, when he
suggested the need for a revision control system. He volunteered to set it up at
AIMI and after some trial-and-error hacking, he established the system we work
with today. The CVS repository maintains separate directories for the canonical
sources and the Linux-specific code. In this way, we can avoid rewriting sources
just for Linux and we are always able to refer back to the “untouched” originals.
Anonymous access to the CVS is permitted, but submissions for changes are
carefully screened by the maintainer.

The Csound UNIX/Linux Development Group

Of course, a CVS development repository isn't of much use unless it has
developers contributing, so a logical next step was the formation of the Csound
UNIX Development group. Programmers Robin Whittle and Damien Miller
joined in immediately, and Damien kindly provided a web page with all
pertinent information for anyone interested in joining the group. It is worth
noting that the group is for development, not just developers. We welcome
anyone interested in seeing Linux Csound grow into the finest language of its
kind. Programmers are certainly welcome, but so are musicians, audiophiles,
DSP engineers and anyone else with an interest in Csound and its possibilities.

In October 1998, two new members made significant contributions to the
group's activities. Gabriel Maldonado donated his entire source tree to the CVS
repository, which enables Linux Csound to keep up with the developments for
his Windows versions. (This generosity is quite typical of the Csound
community. Much code sharing occurs on the Csound mail list, with new
instrument designs freely offered, along with much healthy debate over various
computer music issues.) The other signal addition has been Fred Floberg,
whose contributions require special description.

Csound's internal support for real-time audio has been dependent on calls to
the API for the OSS sound-card drivers. While certainly sufficient for casual use,
many sonic notions such as full-duplex and multiplexed real-time audio I/0 are
not realizable by the OSS/Free driver. However, the ALSA driver does indeed
support those uses; thanks to code from Fred Floberg, Linux Csound now
explicitly supports the ALSA interface. (The ALSA project, led by Jaroslav Kycela,

is forming a new extended sound system API compatible with OSS/Free, but
permitting much more advanced uses for sound-card features not supported
by OSS/Free.) Fred is currently working on expanding MIDI file support. Csound
now supports only Type 0 MIDI files, but Linux Csound should soon support the
Type 1 and perhaps even the Type 2 Standard MIDI File formats.

Also, thanks to Robin and Damien, the Linux Csound distribution now supports
the popular RPM packaging and can be built for glibc (libc6) systems. Debian
users will be pleased to note that developer G<\#252>nter Geiger has prepared
a package in the DEB format. Finally, Nicola Bernardini has written a Csound
orchestra (instrument design) parser, which we hope will eventually be
absorbed into the package. Such a utility is most helpful to a GUI designer,
which brings me to my next topic: the power of Linux Csound and X.

The X Picture

My Linux soundapps web page shows more than twenty entries in the “Csound
Helpers” section. The brief descriptions which follow are just that—brief
descriptions which in no way indicate the full power of these applications. The
examples shown here are for Linux systems running X; some excellent
command-line utilities exist too and are included on the Linux soundapps page
for those tools. All of these utilities work with the current versions of Linux
Csound (3.47 or higher).

Note that each of these applications was built using freely available tools. The
GNU C and C++ compilers, Tcl/Tk, Java, LessTif and WINE are powerful allies in
the advancement of Linux sound and MIDI software. Their developers are to be
commended for the wonderful work they have done for the good of the Linux
community.

Cecilia

Cecilia (by Jean Piche and Alexandre Burton at the University of Montréal) is a
fully-developed Csound composition and sound-processing environment.
Written entirely in Tcl/Tk, Cecilia utilizes the entire range of possibilities
afforded by Linux Csound, presenting a beautiful graphic interface
(customizable, of course) and a powerful composition language (Cybil).
Numerous real-time controls are supported, nearly all aspects of the program
are user-definable, excellent on-line help is available and the GUI fully exploits
Tk in the X environment. Cecilia won first place in the awards for computer-
aided composition and realization software at the 1997 Second International
Music Software Competition in Bourges. (See Figure 1.)

Figure 1. Cecilia

https://secure2.linuxjournal.com/ljarchive/LJ/058/3187f1.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/058/3187f1.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/058/3187f1.jpg

Rain

At the other end of the scale is developer Matti Koskinen's rain, a GIF-to-Csound
score converter. A Csound score is the control file for a Csound instrument,
providing it with such values as event start times, durations, amplitudes and
frequencies, waveform selection and so forth. Matti's utility simply takes a GIF
image, applies some user-defined values and magically translates it into a
Csound score. The score can then be synthesized and played from within the
application, or it can be saved to disk for later processing (perhaps in Cecilia).
(See Figure 2.)

Figure 2. Rain

Adsyn

Adsyn is a graphic editor for Csound “hetro” analysis data files. hetro is one of
the Csound sound file utility programs and its operation is quite simple. Using a
heterodyne filter bank, it analyzes a sound file and creates a data file of
separated frequency and amplitude values. That data file can be read and
graphically represented by Adsyn and the frequency and amplitude
components can be freely altered using the mouse. Csound's resynthesis
opcode (adsyn) can be called; the edited file can then be synthesized and
played from within Adsyn. Professor Oyvind Hammer originally wrote Adsyn for
SGI machines at NoTAM, a Norwegian center for music and acoustics research.
With his good graces, | began the port to Linux. It was finished with much
assistance from Nicola Bernardini. (See Figure 3.)

Figure 3. Adsyn

Ceres2

Ceres2 is Johnathan Lee's enhanced version of Oyvind Hammer's Ceres,
described in my September 1998 L/ article “Porting SGI Audio Applications to
Linux”. Johnathan greatly extended the editing capabilities of the original
software engine, which essentially performs a Fast Fourier Transform (FFT) on a
sound file and renders a graphic representation of its frequency content and
activity. The graphic display can be edited in various ways, a large number of
transforms (spectral mutations) are available, up to three graphic linear control
functions may be specified and a variety of output formats are supported,
including two types of Csound scores. Ceres2 also extends some of the
command-line analysis variables such as FFT size, analysis window size and
window overlap. The Linux port was done by me, but it was dependent on work
already done on the original Ceres with great help from Richard Kent, who also
supplied the invaluable tichstuff libraries which replace the SGI libs. (See Figure
4.)

https://secure2.linuxjournal.com/ljarchive/LJ/058/3187f2.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/058/3187f2.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/058/3187f2.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/058/3187f3.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/058/3187f3.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/058/3187f3.jpg

Figure 4. Ceres2

Rosegarden

The Rosegarden suite includes a MIDI sequencer, a common-practice music
notation display and the very nice feature of being able to save your work as a
Csound score file. Such a tool is especially helpful for users most comfortable
with standard notation conventions, allowing them to compose with their
familiar symbols and then easily convert their creations for use with Csound
instruments. (See Figure 5.)

Figure 5. Rosegarden

HPK Composer

The Java programming language lends itself to the easy creation of platform-
neutral user interfaces. Jean-Pierre Lemoine's HPKComposer is an excellent
example of a “pure Java” application, running under Windows, Mac OS and
UNIX variants. Preparation for Linux is straightforward, depending upon
successful installation of the Java development environment (JDK) in version
1.1.6 or higher, the Swing class libraries (version 1.1 beta3) from Sun
Microsystems and Csound. HPKComposer blends aspects of the CMask
program with the synthesis and DSP methods of Csound: tendency masks are
used to create composition algorithms, which are realized by the synthesis
engines (opcodes) of Csound. VRML displays are supported, the program is
user-extensible, and although Java's current sound support is limited to 8-bit 8
kHz audio, when JDK 1.2 arrives it will support 16-bit 44.1 kHz CD-quality sound.
(See Figure 6.)

Figure 6. HPKComposer

PatchWork

Russell Pinkston's PatchWork for Win95 is a graphic “patcher” for the design of
Csound instruments. Although a UNIX/Linux version of this program exists
(XPatchWork), it has not been maintained and is in need of some serious
debugging. However, the Linux WINE Windows emulator can run the Win95
version, proving once again that Linux always finds a way. (See Figure 7.)

Figure 7. PatchWork

SoundSpace

Developer Richard Karpen has generously shared many of his opcodes with the
general Csound community, one of which is called “space”. In the Csound
manual entry for space is a mention of a GUI for creating the values needed by

https://secure2.linuxjournal.com/ljarchive/LJ/058/3187f4.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/058/3187f4.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/058/3187f4.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/058/3187f5.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/058/3187f5.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/058/3187f5.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/058/3187f6.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/058/3187f6.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/058/3187f6.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/058/3187f7.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/058/3187f7.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/058/3187f7.jpg

the GEN28 stored-function table, and SoundSpace is that GUI. Written in core
Java, this unique utility provides a visual interface for determining the
placement and sonic trajectories of up to 8 sound files in the auditory space,
with support for stereo and 4-channel output. (See Figure 8.)

Figure 8. SoundSpace

Into the Future

What is still to come? By the time this article is published, | hope to have some
more Csound/Java applications running. Developer Michael Gogins has
expressed great interest in seeing his “Silence” Csound environment running
under Linux Java, and the prestigious IRCAM Music and Sound Research Center
announced that a Linux version of their MAX for Java will be available at the end
of 1998. Who knows; maybe someday I'll get around to completing my Tcl/Tk
clone of Csounder, the popular Csound “launcher” for Windows (or at least get
it working better under WINE).

The most recent versions of Linux Csound (3.49.xx and up) can be built for use
on the 64-bit DEC Alpha. Thanks to developer Ed Hall, Linux Csound can claim

to be the first 64-bit music and sound composition language widely and freely
available to the public.

Nicola Bernardini continues to improve the distribution packaging: building
Linux Csound is easier than ever, thanks to his incorporation of the configure
utility. Work proceeds on accommodating autoconf and automake, since it is a
primary objective to use the best tools available for creating the best possible
distribution.

One of the intriguing problems facing the development group is how to make
Csound re-entrant, enabling a plug-in architecture for Csound. To many of us,
such an undertaking would mean a complete rewrite of Csound, and who
knows where that might lead—"Son of Linux Csound”, perhaps? If you would
like to join a very interesting distributed development project, take a look at the
links listed in Resources and feel free to join the development group mail lists.

Richard Boulanger is a professor at the Music Synthesis Department of the
Berklee College of Music. In the spring of 1999, his Csound book will at last be
published by MIT Press. On one of the included CDs, you will find an article
(which will, of course, be out of date by then) about running Csound under
Linux. Yes, it was written by me, but | don't mention it to blow my own horn.
This book is a massive tome and it includes contributions from all the major
(and some not-so-major) members of the international Csound community. It
should inspire many new users, several of whom will discover for the first time
that Csound is available on the Linux platform.

https://secure2.linuxjournal.com/ljarchive/LJ/058/3187f8.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/058/3187f8.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/058/3187f8.jpg

Final Words

Linux Csound offers terrific possibilities for real-time computer music
performance. Along with advances in real-time support, Linux Csound can be
expected to stay at the cutting edge of synthesis methodologies, interface
design, DSP algorithms and composition strategies. It is an ideal tool for
contemporary sonic exploration and it demonstrates once again the flexibility
and power of Linux, the cutting edge OS for the modern musician.

Resources

David Phillips (dIphilp@bright.net) is a composer/performer living in Ohio.
Recent computer-music activities include an ambient composition for the artist
Phil Sugden, lecturing on computer-music programming languages at Bowling
Green State University, and maintaining the “official” version of Csound for
Linux. Dave also enjoys reading Latin poetry, practicing t'ai-chi-ch'uan, and any
time spent with his lovely partner Ivy Maria.

Archive Index Issue Table of Contents

Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

https://secure2.linuxjournal.com/ljarchive/LJ/058/3187s1.html
mailto:dlphilp@bright.net
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/058/toc058.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

JOURNAL

Advanced search

Hunting Hurricanes

C. Wayne Wright
Edward J. Walsh

Issue #58, February 1999

The authors tell us about hunting hurricane using the Scanning Radar Altimeter
based on the Linux system and analyzing the data with Yorick.

Figure 1. Front View of NOAA-43, One of Two WP3Ds

In March 1998, we started development of a new Linux-based data system for
the NASA Goddard Space Flight Center scanning radar altimeter (SRA). The goal
was to significantly reduce the system weight and volume to enable its
installation on one of the NOAA hurricane hunter WP3D aircraft (see Figure 1)
for the 1998 hurricane season. The SRA measures hurricane directional wave
spectra and storm surge. The data will ultimately be used to help refine and
improve hurricane models and improve forecasting and understanding.

The 1998 hurricane season was quite active and the SRA successfully flew in
hurricanes Bonnie, Earl and Georges, collecting almost 50 hours of actual
mission data.

Our principal obstacle was the short time frame until we needed to be
operational onboard the hurricane hunter. The size, weight, complexity and
power consumption of the SRA were also critical design items because of floor
loading considerations and the limited payload capacity of the P3 aircraft when
operating on long (10-hour) missions in turbulent weather conditions
(hurricane-eye wall penetrations). Interrupt response time, crash-proofness
and freedom from “lock-ups” were all important considerations when choosing
the operating system for the SRA.

The new SRA data system, built on top of a Red Hat 4.2 system and Linux kernel
2.0.29, occupies eight inches of vertical rack space, weighs about 40 Ibs, runs
totally from an internal 12-volt aircraft battery and requires about 120 watts of

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1
https://secure2.linuxjournal.com/ljarchive/LJ/058/3212f1.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/058/3212f1.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/058/3212f1.jpg

total input power. It includes a custom ISA board with several PIC microchips
which perform dedicated functions for the radar. It also includes the entire
radar IF (intermediate frequency) strip, detectors and a 2ns/point waveform
digitizer. No monitor or keyboard is directly connected to the SRA; instead,
Linux laptops are used for all control and display. Those laptops run Red Hat
5.1 and 2.0 Linux.

The RT-Linux (Real-time Linux) software does the following:

« Drives the waveform digitizer.

« Computes the centroid-based range measurement between the transmit
and return pulses.

* Manages 96 automatic gain control loops.
* Corrects for aircraft attitude and off-nadir angle.

+ Deposits formatted data in a shared memory block from which a normal
Linux program extracts and records it to a disk file.

The SRA makes extensive use of Tcl/Tk and the Blt graphics library for real-time
display.

Post-processing of SRA data is done with Yorick, a free and very powerful
programming language that runs on Linux, a wide variety of other UNIX
platforms and MS Windows.

Background

The previous implementation of the SRA was developed in 1988 using an array
of 68020s on a Multi-bus-1 backplane, a CAMAC crate full of nuclear physics
instrumentation and a combination of UNIX and VRTX (VRTX is a real-time
kernel). VRTX ran on real-time processors and UNIX ran on the system host. The
CAMAC crate was quite heavy, consumed considerable power, occupied
substantial rack space and was expensive. It used hardware time-interval units
(TIUS) to measure the time for a radar pulse to travel from the aircraft to the
ocean and back. It used “threshold detection”, which caused the TIU to stop and
a CAMAC-based waveform digitizer to acquire the return waveform. The
waveform data required its own 68020 processor to “process” each waveform
and extract certain data. The data were used to refine (post-flight) the range
measurement made by the TIU. Threshold TIUs suffer from an effect known as
“range walk”, which causes the measured range to vary as a function of the
strength of the return pulse. The array of processors communicated with each
other via a 4MB memory card which resided on the multi-bus. Control of the
system was via a character-based terminal and real-time display was done on
an SBX Matrox graphics module which was managed by its own 68020
processor. One of the 68020 processors ran UNIX; that processor ran programs

which extracted radar data from the 4MB card and stored it on a 9-track
magnetic tape or a disk file. The UNIX processor hosted all software
development and managed the operator control terminal.

Due to its volume, weight and power consumption, we were unable to install
this version of the SRA on the hurricane hunter. Limitations in the hardware
signal-tracking circuits would frequently falsely trigger the system on a side
lobe and effectively eliminate the true range measurement.

SRA System Description

Figure 2. Block Diagram of the SRA Sensor

The SRA is an airborne, 36GHz, down-looking, raster-scanning pulsed radar. A
simple schematic block diagram of the sensor is shown in Figure 2. Its one-
degree beam (two-way) is scanned across the aircraft flight track and a precise
time-of-flight measurement is made for each of 64 pulses transmitted at 0.7
degree intervals across the scan. As the aircraft proceeds, a topographic image
of the surface (normally ocean waves) is developed, recorded and displayed.
The nominal ranging accuracy of the SRA is 10cm. Three differential carrier-
phase GPS receivers are used to measure the exact location of three GPS
antennas mounted in an array on top of the aircraft. A ground-reference GPS is
set up where the flight originates and the ground and aircraft GPS data are
processed post-flight to produce an aircraft trajectory, typically accurate to
about 30cm in our application. Higher accuracies are possible when operating
under less stressful flight conditions.

Figure 3. The SRA Scanner Assembly Mounted on the NOAA P3

The Radar Components

The SRA radar consists of a 20-inch Rexalite lens, a feed horn on the lens axis
which looks up into a mechanical scanning mirror that mirror-images the feed
horn to the focal point of the lens, a pulse modulator and RF exciter, receiver,
1.7KW Extended Interaction Amplifier (EIK) and the RT-Linux data system. The
data system is the topic we will discuss here. Figure 3 is a photograph of the
SRA scanner installed on the NOAA hurricane hunter. The fairing is removed in
this photo.

Figure 4. SRA Data Power System

Figure 4 is a block diagram of the SRA power system. The SRA requires an
uninterruptible power source for Linux and the three differential GPS receivers
and computers. Instead of an off-the-shelf UPS, we went with a 12-volt 25 AH

https://secure2.linuxjournal.com/ljarchive/LJ/058/3212f2.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/058/3212f2.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/058/3212f2.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/058/3212f3.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/058/3212f3.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/058/3212f3.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/058/3212f4.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/058/3212f4.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/058/3212f4.jpg

“RG" (recombinant-gas) sealed aircraft battery as the prime power source for
the system. This was chosen for two reasons:

+ We needed an uninterruptible power source, because aircraft are
notorious for power dropouts during engine start and shutdown.

* We needed to power our 12-volt GPS receivers for up to an hour before
and after each mission without aircraft power applied.

We purchased a 12-volt input 150W PC power supply to power the data system.
The battery can power the data system and the three GPS receivers for about
two hours, or the GPS receivers alone for five hours. We located the battery in
the rear of the custom data system housing.

Figure 4 depicts the wiring of our power system.

Figure 5. Block Diagram of the SRA Data System

Figure 5 is a block diagram depicting the internals of the SRA data system. The
computer is a single-board 200 MHz Pentium which plugs into a passive
backplane with ISA and PCl slots. The CPU card contains PCI-VGA video, PCI-IDE
controller, PCI fast-wide SCSI controller, 64MB of RAM, 512MB of cache, two
serial ports, a parallel port and the CPU. A PCl 3¢595 network card provides
networking and a special-purpose ISA card loaded with PIC microcontrollers
provides an interface to the radar systems. A 6.4GB EIDE disk drive is used as /
dev/hda to hold Linux and for data storage. A backup SparQ 1.0GB removable
drive is installed as /dev/hdb. The system has no floppy or CD-ROM drive. If a
CD or floppy is needed, they are simply remotely mounted with NFS from one
of the Linux laptops which have both. No keyboard or monitor is used for
normal operations, though they can be plugged in if the need arises.

Figure 6. The SRA Data System during Development

Figure 7. View of SRA Data System Internals

Initially, we used a 4.2GB SCSI drive, but that used too much electrical power.
Early development was done using a 250W 117vac PC power supply. When we
switched to the 12-volt input 150W power supply, we discovered we were over
our power budget by 25 watts or so. During the boot process, the power
consumed by the combination of the SCSI drive and the waveform digitizer
would cause the power supply to “spike” the 5-volt source and cause a reboot.
It took us several hours to find this problem. It would generally happen just as
Linux began loading, due to the digitizer being powered up and the drive being
accessed. During the DOS boot, the digitizer was not powered until after DOS
booted and after the digitizer configuration program loaded and ran.
Consequently, the loading of Linux was the straw that broke the camel's back.

https://secure2.linuxjournal.com/ljarchive/LJ/058/3212f5.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/058/3212f5.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/058/3212f5.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/058/3212f6.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/058/3212f6.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/058/3212f6.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/058/3212f7.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/058/3212f7.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/058/3212f7.jpg

We finally settled on a 6.4GB EIDE disk drive for Linux and for data storage. The
power consumption of the EIDE drive is substantially less than the SCSI and no
perceptible difference is seen in performance of the data system.

Figure 6 is a photo of the SRA data system during development. It was in this
“state” until just a few days before our first test flight on the NASA C-130. Figure
8 is a photo of the data system after packaging. Figure 7 shows the internal
organization of the data system as viewed from the top rear. The enclosure is
reversed from most rack mounts. We wanted to have ready access to the
computer card connections without having to remove the rear rack cover. The
only connections on the rear are for the GPS receivers and the battery charger.
The black power supply under the data system in Figure 8 is our prime power
supply/battery charger.

Figure 8. Data System after Packaging

2ns PCI Waveform Digitizer, DOS, GageScope

The core data acquisition device in the SRA is the GageScope 8500-PCl
waveform digitizer. It provides for up to 128KB of sequential samples taken
every 2ns (nanoseconds). This permits us to digitize a 256-microsecond
waveform. We actually digitize for 60 microseconds, beginning a few hundred
nanoseconds before the radar pulse is transmitted and ending after enough
time has expired to accommodate a signal return from our highest possible
altitude. The pulse takes 2 microseconds to travel 1000 feet and return, so to
accommodate a maximum altitude of 30,000 feet, we need to digitize at least
60 microseconds. Since a point is digitized every 2ns, there will be 30,000 points
in each waveform. We don't read all 30,000 points out of the digitizer. We
“track” the position of the returns and read out only 256 points centered
around where we expect the return to come from. Since the ocean is basically
flat, this technique works well.

The driver code provided by Gage for the 8500 supports DOS, Windows and
Windows NT. It is extensive, to say the least. It contains several thousand lines
of code solely to initialize most of the cards that Gage makes to an operational
state. Apparently, much of the functionality of the card is loaded into
programmable Logic Arrays from the DOS driver. The Gage driver code
supports virtually every waveform digitizer made on several different OS
platforms. They make extensive use of conditional compilation to select both
the desired digitizer board and the desired operating system. They attempt to
establish an isolating layer of driver code, so that a common set of driver calls
appears to the users of their supplied library.

After looking at the driver start-up code, we though it might take more time to
port the start-up code to Linux than we could afford. In order to avoid porting

https://secure2.linuxjournal.com/ljarchive/LJ/058/3212f8.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/058/3212f8.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/058/3212f8.jpg

the long and complex start-up code, we elected to make the system dual boot
Linux and DOS. This scenario has worked well, permitting us to get a DOS
program going quickly which would configure the digitizer. After the digitizer is
configured, the autoexec.bat DOS script loads Linux using loadlin, a DOS
program which can load a Linux kernel from DOS. The DOS digitizer start-up
code leaves the digitizer in a known functional state. The code required to use
the digitizer is actually not very extensive and only requires accessing a few
registers and memory locations on the Gage card. The folks at Gage were very
helpful in getting it working.

Hardware Interrupts

Waveform data are extracted from the digitizer after a radar pulse event has
occurred. One of the 16C65A microcontrollers controls all aspects of triggering
the transmitter, actuating various gates, triggering the waveform digitizer and
finally interrupting the Linux waveform digitizer interrupt handler.

Figure 9. RT-Linux Interrupt Jitter

The RT-Linux interrupt typically responds in 2 microseconds (on our 200MHz
Pentium) with occasional jitter to several microseconds. When we did this same
test with MS Windows a couple of years ago, we found the fastest response to
be on the order of 50 microseconds (486-dx2 66MHz) with jitter well into tens
of milliseconds. It is incredible just how responsive Linux is to interrupts. Figure
9 is a digital scope capture, where the top trace rising edge is the actual
hardware interrupt signal on the ISA backplane. The bottom trace is a hardware
signal generated by the interrupt code. It simply wrote a “1”, waited awhile,
then wrote a “0” to the printer port. Each horizontal division is 2 microseconds.
This demonstrates the typical latency of our RT-Linux system. Concurrent with
this test, we ran a find command in another xterm so the system had
something to do.

Microcontroller Board, 16c65a

Microcontrollers permit very hard and reliable real-time capabilities. They are
well-suited to replacing arrays of chips and digital logic in many applications
such as the SRA. We designed a special ISA interface board for the SRA which
encompasses most of the special requirements of the radar and special
interfaces.

The board is presently populated with four Microchip 16C65A microcontrollers.
One microcontroller implements a real-time clock which automatically
maintains time-of-day synchronization with our GPS receivers. It has a least
significant fractional time bit of 200 nanoseconds and provides the SRA with up
to 64 bits of accurate time information. This chip automatically captures the

https://secure2.linuxjournal.com/ljarchive/LJ/058/3212f9.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/058/3212f9.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/058/3212f9.jpg

trigger time for each radar pulse. It and its neighbors can all be read and
written by Linux.

A pair of microchips function together to convert the scan encoder pulse trains
into radar trigger events. As our scan mirror rotates, a scan encoder measures
the scan angle. At our scan rates, it produces a pair of 40KHz square-wave
signals which are 90 degrees out of phase. One microchip is programmed to
combine these two signals together and produce a single 80KHz signal, which is
then counted to determine the position of the scanner. The second microchip is
programmed to count the 80KHz signal and initiate a radar pulse at predefined
angles. With its 200ns instruction time, this microchip directly controls all
aspects of the transmitter and receiver electronics and also generates an
interrupt to Linux once a waveform has been acquired by the waveform
digitizer. For each SRA pulse, this microchip:

* Protects the receiver front-end from damage.
* Verifies that the receiver is protected.

+ Gates the digitizer on.

* Gates the EIK amplifier on.

* Delays exactly 200ns.

* Triggers the transmitter modulator to generate an 8ns pulse and causes
the real-time clock microchip to capture the present time.

* Delays 200ns for the transmit pulse to be well clear.
+ Enables the receiver to receive return signals.

* Interrupts the RT-Linux SRA module to extract the waveform data from
the digitizer.

RT-Linux

RT-Linux is a patch which gives Linux many of the most important features
needed by real-time programmers and embedded-system designers. It is
implemented as a set of modules which can be installed and removed using
insmod and company. You also use insmod to install any real-time code you
write. RT-Linux programs execute in the kernel space and have full access to
the system hardware and kernel code as well.

We've done a considerable amount of development using Turbo-C and DOS in
the past, and it is truly amazing how infrequently we had to reboot Linux during
development of the SRA. Back under DOS, we usually had to reboot several
times per day. With Linux, we had to reboot only three or four times during the
entire development period.

Shared Memory

Figure 10. SRA Memory Usage

Once the RT-Linux programs/modules capture the data, they must be written to
storage and displayed for the system operator. We accomplish this by using
shared memory. The SRA has 64MB of RAM and we configured the kernel to
boot using mem=61m which causes the kernel to manage only the lower 61MB,
leaving 3MB untouched. It is this 3MB that we use for real-time data capture
and as a common communication buffer area between RT-Linux modules and
normal user-space programs. Figure 10 depicts the SRA memory usage.

We wrote a single C program (rgc.c) which provides most of the interface
between Linux user mode and RT-Linux. This program is a simple command-
line style program with tons of commands to read and write data space in
common between RT-Linux and user space. Most of our Tcl/Tk scripts merely
open a pipe to this program and use it to pass commands and extract data
from the system. The program can also be used directly from the command
line. This makes development and debugging simpler.

One of the run-line options to rgc causes it to loop, testing for data to be
written to disk. If no data are ready, the program sleeps for one second. If data
are ready, they are extracted and written to the specified disk file.

Linux Laptops

We use up to five laptops on the SRA at once: three for collecting GPS data (one
laptop for each GPS receiver) and two for control and display of real-time SRA
data. A personal laptop is used for control, and if we're both on the flight, we
can both run several instances of the same display programs using another
personal laptop. We each have our favorite color-bar for the image of the sea.
We'll frequently use one machine to control the SRA and the other to write or
modify display or system software as we're flying. The laptops are Chembook
9780s. Each has a 4GB internal hard drive and a modular 6.4GB drive (in place
of the floppy), a 14.2" XGA LCD display, PCMCIA Ethernet card and a 233MHz
Pentium-Pro CPU.

Each of these machines dual boots either Red Hat Linux 5.1 or MS Windows 95.
To use the laptops as X terminals, we boot Linux, then run the Xfree86 server.
We run the X server such that the laptop becomes an X terminal for the SRA
data system. This puts most of the burdensome display processing on the
laptop processor, since the X server seems to be where the CPU cycles go.
There are two ways to cause X to act as an X terminal. The first is:

X -query

https://secure2.linuxjournal.com/ljarchive/LJ/058/3212f10.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/058/3212f10.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/058/3212f10.jpg

and the second:
X -indirect

The target machine must be running XDM (X display manager) for this to work.
The first method will link directly to the target machine, where you see a typical
XDM login prompt. This first method is what we use when controlling the SRA
data system. The second method will give you a list of all the machines known
on the network to support XDM or X terminals. It is useful back at the lab where
many potential hosts are available to pick from.

You can even have two or more X servers running at once. Here's an example:

-query first-machine
:1 -query second-machine
:2 -query third-machine

X
X
X
X :3 -query fourth-machine

You can get a local X server going with the command:

startx -- :4

The SRA system configured for storm-surge measurements consists of three
Chembook Pentium laptops which dual boot Linux and DOS. The GPS data
acquisition program was written for DOS, so each laptop runs this DOS
program when collecting the GPS data. After the mission, we reboot the
machines to Linux and transfer the data to the SRA data system where it is
archived with the other mission data. Once it is all together, we transfer it to
the two laptops. In this way, we have triplicated the data. We then take the
laptops with us back to the hotel and begin analyzing the data. All five laptops
and the SRA data system are on a 10baseT Ethernet network.

GPS and RS-232 Aircraft Data

Some aircraft data are read via RS-232. For this, we are using the standard /
dev/ttySxx ports and drivers. The aircraft data are in a 9600 baud stream
occurring once per second and the GPS produces a position message twice per
second. We use our GPS message to drive a simple Blt plot of the latitude
versus longitude, so we can track the progress of the flight.

The RS-232 data are actually captured by the rgc program, since the RT-Linux
modules can't make use of the native Linux drivers and we didn't need to
rewrite drivers that were working perfectly. Once the data are read, they are
copied to the shared memory area above 61MB where any of the programs can
access it. Normally, it is accessed by another invocation of rgc and read.

Pitch, Roll, Heading and Track Angle

Accurate aircraft attitude, heading and track angle data are critically important
to the SRA in real time. The pitch-and-roll attitude of the aircraft is taken from
the on-board Inertial Navigation Units (INU), using Synchro-to-digital converters
—one for each parameter. These are read by the RT-Linux module during each
scan line. The heading and track information is presently provided via RS-232
from the on-board aircraft data system, which has a direct interface to the
INU's digital data stream.

Resulting Data (Radar, GPS, Aircraft)

The SRA radar data are written to disk files by the rgc program. The aircraft
data are captured by a separate program and written to a separate disk file.
This data is normally captured for the entire duration of the flight, providing a
complete flight record in a single file. The carrier-phase GPS data are captured
continuously from 45 minutes before the flight until 45 minutes after the flight.
The pre- and post-mission data are necessary to resolve the aircraft position to
the centimeter level.

System Software Development

Before any Linux development was carried out, we felt it necessary to write
some DOS code to work with the Gage digitizer board. Turbo-C version 5.0 was
required to compile and use the Gage-supplied library. Once we were
successful in getting a Gage example program to work on DOS, we worked with
Gage engineers to communicate directly with the digitizer using a normal user-
mode program. The main trick was to make the DOS program configure the
digitizer and then exit without powering it down. The second trick was to boot
from DOS into Linux; this turned out to be quite easy with loadlin.

We determined the PCl board settings for the digitizer by reading /proc/pci and
then hard-coding various test programs with the values. We wrote various
normal user-mode programs to become familiar with the digitizer. We were
able to manipulate the digitizer card in every way except handling interrupts.
The gdb debugger was a big help throughout the development.

Microcontroller Software Development

A substantial part of the SRA software is actually firmware resident on various
microchips.

Microchip provides, at no cost, a very complete and easy-to-use development
package for their 16C65A (and other) microcontrollers. It sports a
comprehensive simulator, making it possible to watch simulated execution of

quite extensive programs. The only downside is the system runs only on MS
Windows.

RT-Linux

The RT-Linux extensions provide just the right features for a real-time data
system such as the SRA. The extensions provide much more capability than we
actually use in the SRA. We use it to start an RT task at the end of each raster
scan. The task processes all the data captured during the previous scan and
makes a number of calculations necessary to configure the system for the next
raster.

Linux User to RT-Linux Interface

Figure 11. SRA Progam Block Diagram

We wrote rgc.c to be a liaison between normal user processes under Linux and
the RT-Linux SRA module. Quite simply, rgc sets up a pointer to the shared
memory space that the SRA RT module uses for data storage. They understand
each other because they share a common .h file defining the data organization
in the shared memory space. Figure 11 depicts how the various SRA real-time
programs communicate with each other. rgc usually reads commands from
stdin and writes to stdout. If it is invoked with certain switches, it forks and polls
for RS-232 data and/or writes captured data from the shared memory to disk,
all the while taking its commands from stdin. The command set is simple ASCII
strings such as set thresh 24 or get roll. The Tcl/Tk programs each open a pipe
to their own private rgc, then send commands and receive data back.
Everything is done this way except the topographical image display. That
program, creep.c (because it creeps up the screen), accesses the shared
memory directly. The main reason for concentrating everything into rgc is that
it generally means we need only recompile rgc, creep and the SRA module
when something is added or removed in the shared memory area. In short, it
makes for quicker development.

Linux X Terminal—System Display and Control

Figure 12 is a screen shot of the SRA control laptop during hurricane Bonnie's
landfall. The image on the left side of the screen is the real-time topographic
display. It is gray-scale encoded so that the higher things are, the more white
they appear; the lower, the darker. This image clearly shows waves on the left
side of the image, the beach in the center and a very distinct dune line. We also
have a color-encoded version of this program, but its interpretation is not as
intuitive. The blue/brown display represents the attitude of the aircraft. Itis a
short Tcl/Tk script which reads aircraft attitude data captured by the SRA RT-
Linux module.

https://secure2.linuxjournal.com/ljarchive/LJ/058/3212f11.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/058/3212f11.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/058/3212f11.jpg

Figure 12. SRA Screen in Operation during Bonnie.

The bright green display shows how we control and designate the operating
conditions for the SRA. At this time, we manually find the return signal using
the slider. Once found, we click the “auto” button and the system will keep the
ground in the center of our digitizer window, regardless of aircraft altitude
variations. The flight map is yet another short Tcl/Tk program. It extracts GPS
position data from the shared memory area and uses it to map our position.

TK, Blt, Xview

Tcl 7.6 and Tk 4.2 with Blt 2.3 are used extensively in the SRA. Initially, we
thought it might be useful only for prototyping, but it soon became obvious
that the X server would be the display bottleneck and not Tcl/Tk.

During development and before we purchased the laptops for control, we used
a monitor connected directly to the SRA system. This meant that the X server
would run there too. When we began experimenting with using a remote X
server, we quickly discovered that the burden of the X server had also moved to
the remote system. This was a no-effort way to automatically distribute the
load across one or more computers in the system.

We wrote the image display in C using the Xview library. We used this library
because we already had a book about it, and it didn't look too difficult to use. It
writes each scan line directly to the display and simultaneously to a “pix-map”.
When a “repaint” event occurs, the pix-map is used to repaint the whole image.
A great way to put a load on the display computer X server is to grab the image
map and move it around the screen. The load on the displaying computer will
go through the roof, but the data system will remain unaffected.

Data Analysis—Yorick

Once we had some SRA data, we obviously needed to build some software to
review it. We wanted to have SRA processing software on several machines and
without licensing hassles. That way, we would be able to develop programs at
home, on an office laptop (which is also used to control the SRA), on the SRA
data system computer and on office Linux and Windows PCs. In total, we
needed processing on at least five to ten different systems. We considered IDL,
Matlab and Yorick. Our tool of choice for processing was Yorick. It is free, very
powerful and will run on a wide variety of platforms including almost every
UNIX machine known, Linux and Windows. It has the ability to save data so it
can be read on a big-endian or little-endian machine.

Figure 13. Initial Data Product from Yorick Showing Surface Topographic Images
Superimposed on NOAA Wind Plots

https://secure2.linuxjournal.com/ljarchive/LJ/058/3212f12.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/058/3212f12.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/058/3212f12.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/058/3212f13.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/058/3212f13.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/058/3212f13.jpg

We first heard of Yorick from an article in Linux Journal (“The Yorick
Programming Language”, Cary O'Brien, July 1998). We downloaded it and gave
it a try. We like its C-like syntax and ability to load (and reload) individual
functions of a program. This makes for a very powerful and flexible
development environment. One of its best features is its cost—free! To put
either Matlab or IDL on all the machines would have been prohibitively
expensive. Since we have Yorick on the SRA data system and on the controlling
laptop, we can easily analyze data in the field with minimal effort using the
Linux laptop. Figure 13 shows topographic images from the SRA overlaid on a
wind field plot from the August 24th flight. The sea state was above 18 meters
(60 feet) on the northern flight line.

Results

We had two or three short test flights on the NASA C-130 aircraft before we had
to pack everything up and ship it to MacDill Air Force Base in Tampa, Florida,
for installation on the NOAA hurricane hunter. We removed a number of bugs
during these test flights, but not all. When we shipped the system, it still would
not track properly.

Once we were all installed on the hurricane hunter, we had a 6-hour test flight.
This permitted us to work out almost all of the bugs we had seen earlier and a

few new ones. We still had a few problems with the tracking code, which would
not track reliably.

Bonnie

Figure 14. Flight Track during Bonnie's Landfall

We flew two missions in hurricane Bonnie: the first on August 24 and the
second during landfall on August 26, 1998. During our first transit flight from
Tampa to the storm, we were able to isolate and correct the tracker bug and
everything started working better than expected. Soon after leaving the east
coast of Florida, our topographic display of the sea came alive for the first time,
showing real sea state. Ocean waves as high as 63 feet were observed in the
northeast quadrant of the hurricane on the 24th. Figure 14 shows our August
26 flight track during landfall overlaid on the aircraft weather radar image and a
contour plot of the wind field data. The base image includes the weather radar,
the wind field and the coastline and was provided by the Hurricane Research
Division (HRD) of the NOAA Atlantic Oceanographic and Meteorological
Laboratory (AOML) in Miami. We produced this overlay using Yorick.

In addition to hurricane Bonnie, we also flew in Earl and Georges.

https://secure2.linuxjournal.com/ljarchive/LJ/058/3212f14.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/058/3212f14.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/058/3212f14.jpg

Conclusion

Thanks to the reliability of Linux and all of the off-the-shelf real-time data
processing programs available in that domain, we were able to put together a
state-of-the-art data system on a very tight schedule with a great variety of real-
time displays. The displays proved to be of great value both in troubleshooting
during development and in real-time geophysical assessment and
interpretation during data acquisition. As a result, we were able to document
for the first time the spatial variation of the wave field in the vicinity of a
hurricane and the spatial and temporal variation of the storm surge associated
with hurricanes on landfall.

Resources

C. Wayne Wright (wright@osb.wff.nasa.gov) is a Data Systems Engineer for the
NASA Goddard Space Flight Center, Laboratory for Hydrospheric Processes,
Observational Sciences Branch, Wallops Island, VA. He is a 1984 graduate of the
University of Maryland with a degree in Computer Science. His interests include
aviation, amateur radio and computers. Away from work, he and his wife Vicki
operate a Linux web server.

o

Walsh (walsh@osb.wff.nasa.gov) is a scientist for the NASA Goddard

Edward).
Space Flight Center, Laboratory for Hydrospheric Processes, Observational
Sciences Branch, Wallops Island, VA. He received B.S. and Ph.D. degrees in
Electrical Engineering from Northeastern University in 1963 and 1967,
respectively. Ed is presently on assignment for NASA at the NOAA
Environmental Technology Laboratory in Boulder, Colorado.

Archive Index Issue Table of Contents

Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

https://secure2.linuxjournal.com/ljarchive/LJ/058/3212s1.html
mailto:wright@osb.wff.nasa.gov
mailto:walsh@osb.wff.nasa.gov
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/058/toc058.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

JOURNAL

Advanced search

University of Toronto WearComp Linux Project

Steve Mann

Issue #58, February 1999

Dr. Mann describes his WearComp (“Wearable Computer”) invention and how it
has evolved into the same kind of philosophical basis for self determination
and mastery over one's own destiny that is characteristic of the Linux operating
system that currently runs on WearComp.

This paper is part one of a two-part series. In this part | will describe a
framework for machine intelligence that arises from the existence of human
intelligence in the feedback loop of a computational process.

| will also describe the apparatus of the invention that realizes this form of
intelligence, beginning with a historical perspective outlining its visual and
photographic origins. The apparatus of this invention, called “WearComp”,
emphasizes self-determination and personal empowerment.

| also intend to present the material within a philosophical context | call
COSHER (Completely Open Source, Headers, Engineering and Research) that
also emphasizes self-determination and mastery over one's own destiny.

This “personal empowerment” aspect of my work is what | believe to be a
fundamental issue in operating systems such as Linux. It is this aspect that
WearComp and Linux have in common, and it is for this reason that Linux is the
selected operating system for WearComp.

An important goal of being COSHER is allowing anyone the option of acquiring,
and thus advancing, the world's knowledge base.

| will also introduce a construct called “Humanistic Intelligence” (HI). HI is
motivated by the philosophy of science, e.g., open peer review and the ability to
construct one's own experimental space. HI provides a new synergy between
humans and machines that seeks to involve the human rather than having
computers emulate human thought or replace humans. Particular goals of HI

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

are human involvement at the individual level and providing individuals with
tools to challenge society's preconceived notions of human-computer
relationships. An emphasis in this article is on computational frameworks
surrounding “visual intelligence” devices, such as video cameras interfaced to
computer systems.

Problem Statement

| begin with a statement of what | believe to be a fundamental problem we face
in today's society as it pertains to computers and, in particular, to computer
program source code and disclosure. Later, | will suggest what | believe to be
solutions to this problem. Linux is one solution, together with an outlook based
on science and on self-determination and individual empowerment at the
personal level.

A first, fundamental problem is that of software hegemony, seamlessness of
thought and the building of computer science upon a foundation of secrecy.
Advanced computer systems is an area where a single individual can make a
tremendous contribution to the advancement of human knowledge, but is
often prevented from doing so by various forms of software fascism. A system
that excludes any individual from exploring it fully may prevent that individual
from “thinking outside the box” (especially when the box is “welded shut”). Such
software hegemonies can prevent some individuals from participating in the
culture of computer science and the advancement of the state of the art.

A second fundamental problem pertains to some of the new directions in
human-computer interaction (HCl). These new directions are characterized by
computers everywhere, constantly monitoring our activities and responding
intelligently. This is the ubiquitous surveillance paradigm in which keyboards
and mice are replaced by cameras and microphones watching us at all times.
Perpetrators of this environmental intelligence claim we are being watched for
our benefit and that they are making the world a better place for us.

Computers everywhere constantly monitoring our activities and responding
intelligently have the potential to make matters worse from the software
hegemony perspective, because of the possibility of excluding the individual
user from knowledge not only of certain aspects of the computer upon his or
her desk, but also of the principle of operation and the function of everyday
things. Moreover, the implications of secrecy within the context of these
intelligence-gathering functions puts forth a serious threat to personal privacy,
solitude and freedom.

Figure 1. Evolution of the WearComp Invention

https://secure2.linuxjournal.com/ljarchive/LJ/058/3229f6.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/058/3229f6.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/058/3229f6.jpg

Computer Science or Computer Secrecy

Science provides us with ever-changing schools of thought, opinions, ideas and
the like, while building upon a foundation of verifiable (and sometimes
evolving) truth. The foundations, laws and theories of science, although true by
assumption, may at any time be called into question as new experimental
results unfold. Thus, when doing an experiment, we may begin by making
certain assumptions; at any time, these assumptions may be verified.

In particular, a scientific experiment is a form of investigation that leads
wherever the evidence may take us. In many cases, the evidence takes us back
to questioning the very assumptions and foundations we had previously taken
as truth. In some cases, instead of making a new discovery along the lines
anticipated by previous scientists, we learn that another previous discovery was
false or inaccurate. Sometimes these are the biggest and most important
discoveries—things that are found out by accident.

Any scientific system that tries to anticipate “what 99% of the users of our result
will need” may be constructing a thought prison for the other 1% of users who
are the very people most likely to advance human knowledge. In many ways,
the entire user base is in this thought prison, but many would never know it
since their own explorations do not take them to the outermost walls of this
thought prison.

Thus, a situation in which one or more of the foundation elements are held in
secret is contrary to the principles of science. Although many results in science
are treated as a “black box”, for operational simplicity there is always the
possibility that the evidence may want to lead us inside that box.

Imagine, for example, conducting an experiment on a chemical reaction
between a proprietary solution “A”, mixed with a secret powder “B”, brought to
a temperature of 212 degrees T. (Top-secret temperature scale which you are
not allowed to convert to other units.) It is hard to imagine where one might
publish results of such an experiment, except perhaps in the Journal of Non-
Reproducible Results.

Now, it is quite likely that one could make some new discoveries about the
chemical reaction between A and B without knowing what A and B are. One
might even be able to complete a doctoral dissertation and obtain a Ph.D. for
the study of the reaction between A and B (assuming large enough quantities of
A and B were available).

Results in computer science that are based, in part, on undisclosed matters
inhibit the ability of the scientist to follow the evidence wherever it may lead.
Even in a situation where the evidence does not lead inside one of the secret

“black boxes”, science conducted in this manner is irresponsible in the sense
that another scientist in the future may wish to build upon the result and may,
in fact, conduct an experiment that leads backwards as well as forwards.
Should the new scientist follow evidence that leads backwards, inside one of
these secret black boxes, then the first scientist will have created a foundation
contaminated by secrecy. In the interest of academic integrity, better science
would result if all the foundations upon which it was built were subject to full
examination by any scientist who might, at some time in the future, wish to
build upon a given discovery.

Thus, although many computer scientists may work at a high level, there would
be great merit in a computational foundation open to examination by others,
even if the particular scientist using the computational foundation does not
wish to examine it. For example, the designer of a high-level numerical
algorithm who uses a computer with a fully disclosed operating system (such as
Linux) does other scientists a great service, even if he uses it only at the API
level and never intends to look at its source code or that of the Linux operating
system underneath it.

Figure 2. ECE1766 Class Picture

Obvious or Obfuscated

Imagine a clock designed so that when the cover was lifted off, all the gears
would fly out in different directions, such that a young child could not open up
his or her parents' clock and determine how it works. Devices made in this
manner would not be good for society, in particular for the growth and
development of young engineers and scientists with a natural curiosity about
the world around them.

As the boundary between software and hardware blurs, devices are becoming
more and more difficult to understand. This difficulty arises in part as a result
of deliberate obfuscation by product manufacturers. More and more devices
contain general-purpose microprocessors, so that their function depends on
software. Specificity of function is achieved through specificity of software
rather than specificity of physical form. By manufacturing everyday devices in
which only executable code is provided, manufacturers have provided a first
level of obfuscation. Furthermore, additional obfuscation tools are often used
in order to make the executable task image more difficult to understand. These
tools include strippers that remove things such as object link names and even
tools for building encrypted executables which contain a dynamic decryption
function that generates a narrow sliding window of unencrypted executable, so
that only a small fragment of the executable is decrypted at any given time. In
this way, not only is the end user deprived of source code, but the executable

https://secure2.linuxjournal.com/ljarchive/LJ/058/3229f3.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/058/3229f3.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/058/3229f3.jpg

code itself is encrypted, making it difficult or impossible to look at the code
even at the machine-code level.

Moreover, complex programmable logic devices (CPLDs), such as the Alterra
7000 series, often have provisions to permanently destroy the data and
address lines leading into a device, so that a single chip device can operate as a
finite-state machine yet conceal even its machine-level contents from
examination. (See Resources 1 for an excellent tutorial on FPGAs and CPLDs.)
Devices such as Clipper chips go a step further by incorporating fluorine atoms,
so that if the user attempts to put the device into a milling machine to mill it off
layer by layer for examination under an electron microscope, the device will
self-destruct in a quite drastic manner. Thus, the Clipper phones could contain
a “Trojan horse” or some other kind of back door and we might never be able
to determine whether or not this is the case—yet another example of
deliberate obfuscation of the operational principles of everyday things.

We have a growing number of general-purpose devices in which the function or
purpose depends on software, downloaded code or microcode. Because this
code is intellectually encrypted, so is the purpose and function of the device. In
this way, manufacturers may provide us with a stated function or purpose, but
the actual function or purpose may differ or include extra features of which we
are not aware.

Environmental Intelligence Gathering Systems

A number of researchers have been proposing new computer user interfaces
based on environmental sensors. Buxton, who did much of the early pioneering
research into intelligent environments (smart rooms, etc.), was inspired by
automatic flush urinals (as described, for example, in U.S. Pat. 4309781,
5170514, etc.) and formulated, designed and built a human-computer
interaction system called the “Reactive Room” (see Resources 2 and 3). This
system consisted of various sensors, including optical sensors (such as video
cameras) and processing, so that the room would respond to the user's
movement and activity.

Increasingly, we are witnessing the emergence of intelligent highways, smart
rooms, smart floors, smart ceilings, smart toilets, smart elevators, smart light
switches, etc. However, a typical attribute of these “smart spaces” is that they
were designed by someone other than the occupant. Thus, the end user of the
space often does not have a full disclosure of the operational characteristics of
the sensory apparatus and the flow of intelligence data from the sensory
apparatus.

In addition to the intellectual encryption described in the previous section,
where manufacturers could make it difficult, or perhaps impossible, for the end

user to disassemble such sensory units in order to determine their actual
function. There is also the growth of hidden intelligence, in which the user may
not even be aware of the sensory apparatus. For example, U.S. Pat. 4309781
(for a urinal flushing device) describes:

... sensor... hidden from view and thus discourage
tampering with the sensor... when the body moves
awaP/ from the viewing area... located such that an
adult user of average height will not see it... sensing
means, will be behind other components... positioned
below the solenoid to allow light in and out. But the
solenoid acts in the nature of a hood or canopy to
shield the sensing means from the normal line of sight
of most users.... Thus most users will not be aware of
the sensing means. This will aid in discouraging
tampering with the sensing means. A possible
alternate arrangement would be to place the sensing
means below and behind the inlet pipe.

U.S. Pat. 4998673 describes a viewing window concealed inside the nozzle of a
shower head, where a fiber optics system is disclosed as a means of making the
sensor remote. The concealment is to prevent users from being aware of its
presence. U.S. Pat. 5199639 describes a more advanced system where the
beam pattern of the nozzle is adapted to one or more characteristics of the
user, while U.S. Pat. 3576277 discloses a similar system based on an array of
sensing elements.

A method of creating viewing windows to observe the occupants of a space
while at the same time making it difficult for the occupants to know if and when
they are observed is proposed in U.S. Pat. 4225881 and U.S. Pat. 5726706.

In addition to concealing the sensory apparatus, a goal of many visual
observation systems is to serve the needs of the system architect rather than
the occupants. For example, U.S. Pat. 5202666 discloses a system for
monitoring employees within a restroom environment, in order to enforce
hygiene (washing of hands after using the toilet).

Other forms of intelligence, such as intelligent highways, often have additional
unfortunate uses beyond those purported by the installers of the systems. For
example, traffic-monitoring cameras were used to round up, detain and
execute peaceful protesters in China's Tiananmen Square.

U.S. Pat. 4614968 discloses a system where a video camera is used to detect
smoke by virtue of the fact that smoke reduces the contrast of a fixed pattern
opposite the video camera. However, the patent notes that the camera can also
be used for other functions such as visual surveillance of an area, since only
one segment or line of the camera is needed for smoke detection. Again, the

camera may thus be justified for one use; additional uses, not disclosed to
occupants of the space, may then evolve. U.S. Pat. 5061977 and 4924416
disclose the use of video cameras to monitor crowds and automatically control
lighting in response to the absorption of light by the crowds. While this form of
environmental intelligence is purportedly for the benefit of the occupants (to
provide them with improved lighting), there are obvious other uses.

U.S. Pat. 5387768 discloses the use of visual inspection of users in and around
an automated elevator. Again, these provide simple examples of environmental
intelligence in which there are other uses, such as security and surveillance.
Although even those other uses (security and surveillance) are purportedly for
the benefits of the occupants, and it is often even argued that concealing
operational aspects of the system from the occupants is also for their benefit, it
is an object of this paper to challenge these assumptions and provide an
alternate form of intelligence.

When the operational characteristics, function, data flow and even the very
existence of sensory apparatus is concealed from the end user, such as behind
the grille of a smoke detector, environmental intelligence does not necessarily
represent the best form of human-machine relationship for all concerned. Even
when the sensors are visible, there must be the constant question as to
whether or not the interests of the occupant are identical to those who control
the intelligence-gathering infrastructure.

The need for personal space, free from monitoring, has also been recognized
(see Resources 4) as essential to a healthy life. As more and more personal
space is stolen from us, we may need to be the architects of alternate spaces of
our own.

Solution to Software Fascism

The first solution to these problems is a framework called Completely Open
Source, Headers, Engineering, and Research (COSHER). Before investing
considerable time in learning how to use new software and in developing works
for that new software, which may then become locked into a particular file
format, we ask ourselves a very simple question: is the software in question
COSHER?

This means that there has been no deliberate attempt at obfuscation of the
underlying principles of the operation of this software or in preventing us from
freely distributing the intellectual foundations upon which we may invest many
years of our lives. Deliberate attempts at obfuscation include such practices as
eliminating source code and stripping executable task images.

By using COSHER software, we are making a statement that we prefer
Computer Science to Computer Secrecy. Science supports the basic principles
of peer review, a continued development and advancement of software
principles and principles that we build on top of the software.

Moreover, the time we invest in learning the software as well as creating works
in the software will be less likely to go to waste if we have a copy of the
complete source code of the software. In this manner, should the software ever
become discontinued or unsupported, we will be able to become our own
software support group and migrate the software forward to new architectures
as our old computers become obsolete. If it is COSHER, chances are we will be
less likely to lose the many hours or years we invest in producing works within
the software. Furthermore, if we make new discoveries that are built on a
foundation of COSHER software, they are easier to distribute.

In science, it is important that others be able to reproduce our results. Imagine
what it would be like if we had built our results on top of DOS 3.1. Others would
have to either rewrite our software to exactly reproduce our results, or find an
old version of DOS 3.1. Since this is proprietary software, we are not at liberty
to freely distribute it with our research, but it is also no longer available for
purchase. However, if we had built our work on COSHER software such as Linux
1.13, we can include a full distribution of Linux 1.13 in an archive together with
our results. Many years in the future, a scientist wishing to reproduce our
results could then obtain a virtual machine (emulator for our specific
architecture which will no doubt be obsolete by then) and install the COSHER
operating system (Linux 1.13) that came with our archive, then compile and run
our programs.

The Linux operating system is a good example of a COSHER operating system.
GNU software is also COSHER. Many COSHER software packages are available,
including GIMP (Gnu Image Manipulation Program) and the VideoOrbits
software package (described in http://wearcam.org/orbits/index.html).

Solution to Environmental Intelligence Gathering

| propose a computational framework for individual personal empowerment.
This framework is based on my “WearComp” invention—an apparatus for
(embodiment of) realization of HI.

This framework involves designing a new kind of personal space. An
embodiment of the “WearComp” invention is an apparatus that is owned,
operated and controlled by the occupant of that space. In one sense, the
apparatus of this invention is like a building built for one occupant and
collapsed down around that one occupant.

WearComp as a Basis for HI

| invented WearComp in Canada in the 1970s as a photographic tool for the
visual arts (see Resources 5), in particular, something | called “mediated reality”
(altered perception of visual reality). The goal of mediated reality, unlike related
concepts such as virtual (or augmented) reality, was to reconfigure (augment,
deliberately diminish or otherwise alter) the perception of reality in order to
attain a heightened awareness of how ordinary, everyday objects respond to
light.

Hl is a new form of human-computer interaction comprising a computer that is
subsumed into the personal space of the user (e.g., the computer may be worn,
hence the term “user” and “wearer” of the computer are interchangeable),
controlled by the wearer, with both operational and interactional constancy
(e.g., itis always on and always ready and accessible [see Resources 6]).

The WearComp invention, described in IEEE Computer, Vol. 30, No. 2 at http://
wearcomp.org/ieeecomputer.htm (a historical account was given in IEEE
ISWC-97, October 1997 and is also on-line at http://wearcomp.org/historical/
index.html) forms the basis for HI. The evolution of the apparatus of this
invention is depicted in Figure 1.

Definition of WearComp

A wearable computer is a computer that is subsumed into the personal space
of the user, controlled by the user and has both operational and interactional
constancy.

Most notably, it is a device that is always with the user and into which the user
can always enter commands and execute a set of entered commands while
walking around or doing other activities.

The most salient aspect of computers in general (whether wearable or not) is
their reconfigurability and their generality, e.g., their function can be made to

vary widely, depending on the instructions provided for program execution.
This is true for the wearable computer (WearComp). For example, the wearable
computer is more than just a wristwatch or regular eyeglasses; it has the full
functionality of a computer system and, in addition, is inextricably intertwined
with the wearer.

This is what sets the wearable computer apart from other wearable devices
such as wristwatches, regular eyeglasses, wearable radios, etc. Unlike these
other wearable devices that are not programmable (reconfigurable), the
wearable computer is as reconfigurable as the familiar desktop or mainframe
computer.

The formal definition of wearable computing defined in terms of its three basic
modes of operation and its six fundamental attributes is provided elsewhere in
the literature. (See Resources 7.)

WearComp, as Universal Interface to Reality

Such a computational framework allows one to subsume all of the personal
electronics devices one might normally carry, such as cellular phone, pager,
wrist watch, heart monitor, camera and video camera into a single device.
Obviously, since it is a fully featured computer, it is possible to respond to e-
mail, plan events on a calendar, type a report, etc., while walking, standing in
line at the bank or anywhere. In this way, WearComp anticipated the later
arrival of the so-called “laptop computer”, but has advantages over the laptop
in the sense that it can be used while walking around doing other things.
However, the real power of WearComp is in its ability to serve as a basis for
personal imaging and humanistic intelligence.

Figure 3. Another Example of WearComp

Personal Safety Device

WearComp not only subsumes the function of the laptop computer, but goes
beyond it. Another area in which WearComp provides a truly new form of user
interface not found on laptops and PDAs (personal digital assistants) is in its
constancy of user interface and operation. This characteristic may become
most evident in its use as a personal security camera. Imagine, perhaps as you
walk down some quiet street at night, an assailant appears, demanding cash
from you. You would not likely have the time or opportunity to pull out a
camcorder to record the experience, but since the eyeglasses are worn
constantly, you would have a video record of the experience to aid
investigation.

https://secure2.linuxjournal.com/ljarchive/LJ/058/3229f4.jpg

Camera of the Future

Less extreme examples of WearComp as a new user-interface include the
ability to construct a personal documentary video without conscious thought or
effort. For example, in a fully mediated reality, all light entering the eyes, in
effect, passes through the computer and may therefore be recorded (and
possibly transmitted to remote locations). Wearable Wireless Webcam (see
Resources 8) is an example of a personal documentary video recorded using a
reality mediator.

In the future, we may very well have the capability to capture and recall our
own personal experiences and to have photo albums generated automatically
for us. We will never miss baby's first steps, because we will have a retroactive
record feature that lets us, for example, “begin recording from 5 minutes ago”.
Photo albums, in addition to being generated automatically, may also be
exhibited while they are being generated. Rather than sending postcards to
friends and relatives or showing them an album after you come back from
vacation, you may just put on your sunglasses and have the album sent to
them automatically, as was done with the Wearable Wireless Webcam
experiment in which video was transmitted and still images automatically
selected from the video.

Personal Intelligence Arms Race

While there will no doubt be more environmental intelligence than personal
intelligence, there is at least the hope that there might be an end to the drastic
imbalance between the two. The individual making a purchase in a department
store may have several cameras pointing at him to make sure that if he
removed merchandise without payment, there would be evidence of the theft.
However, in the future, he will have a means of collecting evidence that he did
pay for the item, or a recorded statement from a clerk about the refund policy.
More extreme examples such as the case of Latasha Harlins, a customer falsely
accused of shoplifting and fatally shot in the back by a shopkeeper as she
attempted to walk out of the shop, come to mind.

In this sense, the camera-based reality mediator becomes an equalizer much
like the Colt 45 in the “Wild West”. In the WearCam case, it is simply a matter of
mutually assured accountability.

Future Directions

Much work remains to be done in development of this project. Currently, |
teach Electrical and Computer Engineering (ECE1766) at the University of
Toronto. To the best of my knowledge, this is the world's first course on how to
be a “cyborg” entity. Students learn not only by doing, but by being. | call this

form of learning existential learning. Each student creates a “reconfigured
self"--a new form of personal space. Thus, students learn about the concept of
personal empowerment from a first-person perspective through personal
involvement.

We are writing new protocols for the altered perception of reality (mediated
reality) that the WearComp provides. One example is picture-transfer protocol
(PTP), in which packets of variable length are transmitted. Each packet is a JPEG
compressed picture. Because of image compression, the amount of data varies
depending on image content, hence the packet length depends on image
content.

The reason for one packet per picture is that pictures are taken 60 times per
second, which is much faster than they can be sent. Thus, whenever there is a
lost packet and a re-transmission is needed, a newer picture will most likely be
available to be sent instead. With PTP, retransmissions are always current.

Next month | will describe a mathematical (computational) framework called
“Mediated Reality”, in which we will see that picture data is of greatest value
only if it is up-to-date. Old pictures are of less value when trying to construct a
computer-mediated reality. Thus, packet resends should always be of the most
current image; hence the design of PTP is based on variable packet lengths, in
which the packet length is the length of a picture.

Further information about the WearComp Linux project may be found in http://
wearcam.org/ece1766.html.

Resources

Thanks to Kodak and Digital Equipment Corporation (DEC) for assistance with
the Personal Imaging and Humanistic Intelligence projects.

Steve Mann, inventor of WearComp (wearable computer) and WearCam (eye-
tap camera and reality mediator), is a faculty member at the University of
Toronto, Department of Electrical and Computer Engineering. Dr. Mann has
been working on his WearComp invention for more than 20 years, dating back

https://secure2.linuxjournal.com/ljarchive/LJ/058/3229s1.html

to his high school days in the 1970s. He brought his inventions and ideas to the
Massachusetts Institute of Technology in 1991, founding what later became the
MIT Wearable Computing Project, and received his Ph.D. from MIT in 1997 in
this new field he had established. Anyone interested in joining or helping out
with the “community of cyborgs” project or the WearComp Linux project may
contact the author by e-mail at mann@eecg.toronto.edu.

Archive Index Issue Table of Contents

Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/058/toc058.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

JOURNAL

Advanced search

Virtual Network Computing

Brian Harvey

Issue #58, February 1999

Mr. Harvey tells us about the VNC software package and how to set it up to
control MS Windows servers from Linux.

In today's changing world, an increasing number of UNIX system administrators
are finding they need to support Windows NT servers in their work
environments. Whether Exchange or application servers, NT servers are
starting to creep into what were once UNIX-only shops. The responsibility of
managing an NT server can be discouraging to any UNIX guru. UNIX users are
used to the flexibility of the X Window System—the ability to run applications
easily on any UNIX server and have remote X applications display on the local
desktop. It is much more difficult to manage NT servers remotely and the
administrator usually needs to be at the system's console to run most NT
applications.

Several commercial products allow MS Windows applications to be controlled
remotely from an X desktop. In addition, there are several commercial X servers
for MS Windows which allow the opposite. However, until recently an
equivalent free software package was not available.

VNC

Researchers at the Olivetti & Oracle Research Laboratory (ORL) have released
the VNC software package under the GNU general public license. VNC, which
stands for Virtual Network Computing, is a client/server-based, stateless,
platform-independent protocol developed at ORL. This protocol implements a
remote display system in which a user is allowed to control a computing

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

“desktop” managed by a VNC server, by connecting to it from a VNC client
application called a “viewer”. VNC servers currently exist for Windows 95/NT,
Macintosh and UNIX. A variety of VNC clients exist as well for a number of
operating systems. Figure 1 shows all the connections currently possible with
the VNC protocol. Many of the VNC viewers are ported by users on the Net. ORL
supplies precompiled server and client binaries for Windows 95/NT, Macintosh,
Linux, Digital UNIX and Solaris. In addition, ORL provides a Windows CE client.

Figure 1. VNC Protocol Connections

In this article, | will discuss how to set up the VNC software, allowing you to
control a Windows desktop from Linux running the X Window System (probably
the most common use of VNC for Linux users).

Installation

Linux (VNC Viewer)

ORL provides an x86 Linux 2.0 binary that works great with Red Hat 5.1 and can
be retrieved from their download page (see Resources). Once you have the
package, unarchive it using gunzip and tar. The binary distribution provides no
installation script, but for our purposes we simply need to have root copy the
viewer binary, vncviewer, into a suitable location accessible by others, such as /
usr/local/bin.

Windows 95/NT (VNC Server)

ORL provides a precompiled Windows 95/NT binary supplied as a package that
can also be downloaded from their download page. The package installs like
most other Windows software packages, i.e., using InstallShield. The VNC server
(WIinVNC) can be installed as a regular application (started/stopped by the user
currently logged on to the console) or as an NT service (starts automatically
when NT boots; does not exit when user logs out). Installation as a service is a
new feature in recent versions of WinVNC. The latest version at the time of
writing, is 3.3.2R5. VNC is actively developed, so a newer version of the software
will most likely be ready to download by the time you read this. | recommend
installing WinVNC as a service so that the VNC server is always running and you
do not have to remain logged in on the Windows console at all times.

To install WinVNC as a service, simply install the package as you would normally
install any other Windows application, then type in a command window:

cd

WinVNC.exe -install

WinVNC.exe -run # or reboot NT to have the<\n>
service start automatically

https://secure2.linuxjournal.com/ljarchive/LJ/058/2969f2.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/058/2969f2.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/058/2969f2.jpg

Configuration

The Linux VNC viewer requires no configuration to use. However, the Windows
VNC server does require some minor configuration. To bring up the
configuration window, either right-click on the WinVNC icon in the Windows NT/
95 system tray and select Properties, or open a DOS command window and

type:

cd
WinVNC.exe -settings

Figure 2. Windows VNC Configuration Window

In the configuration window, shown in Figure 2, the following options can be
set:

 Make sure Accept Socket Connections is selected. If this option is not
checked, all incoming connections will be disabled.

* The Display Number can be left at 0. This value is specified when using a
VNC viewer to connect to this server.

+ Set a Password to secure access to this VNC desktop (a good idea). When
connecting to this VNC server via a viewer, you will be prompted for the
same password.

+ If Disable Remote Keyboard & Pointer is selected, all incoming viewer
connections will be able to see the desktop but will not be able to move
the mouse or type anything (a read-only connection).

* In the Update Handling section, various options can be turned on/off to
control how the VNC server sends “desktop changes” to a VNC viewer. See
http://www.orl.co.uk/vnc/winvnc.html for in-depth explanations on the
pros and cons of each option.

Press the Ok or Apply button to apply your configuration changes.

Using the Linux VNC viewer

Once you have WinVNC running on a Windows server, try connecting to it from
your Linux desktop by typing (within X) the following command, followed by the
password you gave when configuring WinVNC (if any):

> vncviewer
vncviewer: VNC server supports protocol version 3.3 (viewer 3.3)
Password:
vncviewer: VNC authentication succeeded
vncviewer: Desktop name "boxster"
vncviewer: Connected to VNC server, using protocol version 3.3
vncviewer: VNC server default format:
16 bits per pixel.
Least significant byte first in each pixel.
True color: max red 31 green 63 blue 31
shift red 11 green 5 blue 0

https://secure2.linuxjournal.com/ljarchive/LJ/058/2969f3.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/058/2969f3.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/058/2969f3.jpg

Using default colormap and translating to BGR233
Creating window depth 8, visualid 0x22 colormap 0x21

If you typed the password correctly, several lines of information will appear and
a new large window will pop up showing the entire remote Windows desktop.
When you are finished using the VNC viewer, simply close the viewer's window
to close the connection. The remote Windows desktop will be left in the last
state the viewer left it in.

Figure 3 shows a sample Linux desktop with a newly opened VNC viewer
connection “viewing” a Windows NT desktop.

Figure 3. Linux Desktop Viewing Windows NT

A nice feature available in recent VNC releases is the ability to send the
infamous ctrl-alt-del key sequence to the Windows desktop shown in a VNC
viewer. This feature has distinct advantages when the VNC server is installed as
a service:

* If the VNC server is installed as a service under Windows NT, you don't
need to have a user logged on all the time with the VNC server running as
a Windows application. When it comes time to use that server remotely,
simply connect to it with a VNC viewer, press ctrl-alt-del to get the NT login
Window, and log on as you normally would to the NT box.

* If you need to stay logged on to the NT server but want to exit your local X
session, you can type ctrl-alt-del to get the “Windows NT Security” pop-up
window, click on “Lock Workstation” to lock the console, close the VNC
viewer connection, then exit your X session. You will still remain logged on
to the NT server; its screen is now locked.

Advantages

The VNC protocol has several advantages. The main one is that it is stateless. A
user can close a connection to a remote desktop from one VNC viewer and
later reconnect to that same remote desktop from the same or different VNC
viewer, and it will be in the same state.

When using the Java VNC viewer, a system administrator can control a Windows
95/NT, Macintosh, or UNIX desktop from anywhere in the world using a Java-
enabled browser. The VNC server can be configured so that all incoming viewer
connections will be able to see the desktop but will not be able to move the
mouse or type anything (a read-only connection). This option comes in handy in
a teaching environment, where each student in a class connects to the
instructor's “desktop” and watches a demonstration on his own computer
rather than on an overhead connected to the instructor's computer.

https://secure2.linuxjournal.com/ljarchive/LJ/058/2969f4.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/058/2969f4.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/058/2969f4.jpg

How I Use VNC

At work, | have an Alpha running Digital UNIX and a P133 running Windows NT
4.0. Although I am strictly a UNIX systems administrator, my company's e-mail
standard is based on Microsoft Exchange. Therefore, | am required to have a
Windows desktop on my desk in order to read Exchange e-mail. However, at
home | run only Linux. | was looking for a way to read my Exchange e-mail from
home. After reading about VNC, | knew | had found what | was looking for.

| use the Linux VNC viewer at home to connect to the Windows NT box on my
desk at work over a PPP connection. Figure 4 shows me reading my Exchange
e-mail with such a setup. While VNC performance over a PPP line isn't
spectacular, it is very usable and solves my problem of not being able to read
Exchange e-mail from home.

Figure 4. Reading MS Exchange from Linux

Resources

Brian Harvey is currently a UNIX Systems Administrator for U.S. Technical
Services in Huntington Beach, CA. He is a graduate of UC Riverside with a BS
and MS in Computer Science. He can be reached via email at
brian.harvey@ustsvs.com

Archive Index Issue Table of Contents

Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

https://secure2.linuxjournal.com/ljarchive/LJ/058/2969f5.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/058/2969f5.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/058/2969f5.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/058/2969s1.html
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/058/toc058.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

JOURNAL

Advanced search

Configuring ATM Networks

Wayne J. Salamon

Issue #58, February 1999

This article describes how to configure Linux-based PCs and an asynchronous
transfer mode (ATM) switch to build on ATM network.

The Linux ATM software (device driver and utilities) is developed and supported
by Werner Aimsberger in Switzerland as part of the Linux-ATM API software set
(see Resources). This software contains device drivers for the following ATM
adapters: Efficient ENI-155P, SMC ATM Power 155, Rolf Fiedler's TNETA1570
board, Zeitnet ZN1221/ZN1225 and the IDT 77901/77903 155 and 25 Mbps
adapters. Also, a driver for the Fore PCA-200E ATM adapter is available
separately (see Resources). The two adapters | have experience with are the
Efficient ENI-155p and the Fore PCA-200E.

The National Institute of Standards and Technology (NIST) uses ATM and Fast-
Ethernet networks as interconnects in its scalable cluster computing initiative.
One research area is evaluating the benefits of ATM and Fast-Ethernet
networks in this cluster environment.

In this article, | will tell you how to obtain and install the ATM support software
and device drivers. | will also describe how to configure the ATM connections
on the PCs and the switch to be used for IP network traffic.

The ATM interface cards | use are ENI-155P ATM adapters produced by Efficient
Networks and PCA-200EPC adapters from Fore Systems. These cards are
installed in standard Pentium or Pentium-Pro-based PCs running Linux. The
ATM switch | used for this article is a Fore ASX-1000, although the information |
give applies to all of the Fore ATM switches. This switch can be set up to allow
the Linux workstations to use IP over both Switched Virtual Circuits (SVC) and
Permanent Virtual Circuits (PVCQ).

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

Obtaining and Installing the Linux-ATM Software

The ATM software is available from http://I[rcwww.epfl.ch/linux-atm/. The
software is packaged as a compressed, gzipped tar file. Each version of the
software is tied to a specific version of the Linux kernel. For this article, | used
version 0.35 running on Linux kernel 2.1.90. The size of the ATM software
distribution is roughly 500KB. The device driver for the Fore PCA-200E adapter
can be obtained by anonymous FTP from ftp://os.inf.tu-dresden.de/pub/
pca200e/. Refer to the README file in the PCA200 distribution for further
information.

The driver portion of the Linux-ATM software, as well as the changes to the
Linux kernel, are shipped as one large patch file. Therefore, adding support to
the Linux kernel for ATM is straightforward: apply the kernel patch, configure
and rebuild the kernel in the usual way. The ATM configuration items you must
have are:

« Asynchronous Transfer Mode (ATM) (CONFIG_ATM)
* Classical IP over ATM with ATMARP (CONFIG_ATM_ATMARP)

* Device driver, one of the following:Efficient Networks ENI155P
(CONFIG_ATM_ENI)ZeitNet ZN1221/ZN1225 (CONFIG_ATM_ZATM)Rolfs TI
TNETA1570 (CONFIG_ATM_TNETA1570)IDT 77201 (NICSTAR)
(CONFIG_ATM_NICSTAR)

| recommend starting with a fresh Linux kernel source tree before applying the
ATM patch. Refer to the USAGE file that is part of the Linux-ATM software, as
things may change. All of the device drivers in the distribution can be built as
kernel modules or as part of the kernel object itself. If you are using a Fore
PCA-200E adapter, you do not select a driver during the kernel configuration.
The PCA-200E device driver is built as a module separately, as specified in the
README file included in the PCA200 distribution.

After the kernel is patched, rebuilt and installed, you are ready to build the ATM
support software. Again, refer to the instructions in the USAGE file. One change
| recommend is installing the support files in /usr/local/atm-version/bin and
creating a soft link from /usr/local/atm to the actual install directory. By using
the soft link, you can change ATM software levels and back them out, if needed,
without changing the configuration scripts.

Configuring the ATM Device Interface

You are now ready to configure the IP over ATM. First, you must decide what
type of “virtual circuits” to use to connect the machines. ATM is a point-to-point,
switched technology; in order for two hosts to communicate, a virtual circuit
must be established between them.

Switched Virtual Circuits (SVCs) are connections that are established
dynamically and torn down when the connection is no longer needed.
However, a high latency is associated with establishing a connection. Also, SVCs
are deleted after a timeout period if no traffic is sent over the connection.
Therefore, the latency associated with SVCs is not always predictable. |
encountered several problems when using SVCs, such as connections not being
established or sometimes failing to remain open.

Permanent Virtual Circuits (PVCs) are established and kept open. Thus, no
latency is associated with establishing the connection, as there is when using
SVCs. The disadvantage of PVCs is that the switch must be configured to
establish all the connections between the hosts. When you have several hosts
and each host needs to communicate with all the others, the number of PVCs
required within the ATM switch grows rapidly. Specific configuration
information for SVCs and PVCs is discussed later, but | will jump ahead a bit in
order to complete the IP configuration now. The steps to configure the ATM
interface are as follows:

Start the ATM software daemons with these commands:
atmsigd -b
ilmid -b
atmarpd -b

Create the ATM device name:

atmarp -c atm@

Configure the ATM interface for IP:

ifconfig atm@ ipaddr netmask netmask mtu mtu

Add the route for the ATM subnet:

route add -net network netmask netmask atm@

 Create a permanent ATM ARP (address resolution protocol) cache entry
for the ARP server:

atmarp -s arpserver arpsrvnsap arpsrv

ipaddr is the IP address of the ATM interface, netmask is the network mask and
network is the IP address of the network to which we are connecting. arpserver
is the IP address of the ATM ARP server and arpsrvnsap is the ATM address of
the ARP server. The ATM