
 Advanced search

Linux Journal Issue #58/February 1999

Features

COAS: A Flexible Approach to System Administration Tools by Olaf
Kirch

Caldera is working on a new easy-to-use configuration tool for
Linux. Mr. Kirch gives us the details.

Csound for Linux by David Phillips
Mr. Phillips discusses some history as well as what's happening
now in the Linux Csound world.

Hunting Hurricanes by C. Wayne Wright and Edward J. Walsh
The authors tell us about hunting hurricane using the Scanning
Radar Altimeter based on the Linux system and analyzing the
data with Yorick.

University of Toronto WearComp Linux Project by Dr. Steve Mann
Dr. Mann describes his WearComp (“Wearable Computer”)
invention and how it has evolved into the same kind of
philosophical basis for self determination and mastery over
one's own destiny that is characteristic of the Linux operating
system that currently runs on WearComp.

News & Articles

Virtual Network Computing by Brian Harvey
Mr. Harvey tells us about virtual network computing and how to
set it up to control MS Windows Application from Linux.

Configuring ATM Networks by Wayne J. Salamon

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1
https://secure2.linuxjournal.com/ljarchive/LJ/058/3019.html
https://secure2.linuxjournal.com/ljarchive/LJ/058/3187.html
https://secure2.linuxjournal.com/ljarchive/LJ/058/3212.html
https://secure2.linuxjournal.com/ljarchive/LJ/058/3229.html
https://secure2.linuxjournal.com/ljarchive/LJ/058/2969.html
https://secure2.linuxjournal.com/ljarchive/LJ/058/3005.html

This article describes how to configure Linux-based PCs and an
asynchronous transfer mode (ATM) switch to build on ATM
network.

The GNOME Project by Miguel de Icaza
What is GNOME and where is it heading? Miguel tells us all.

KDE: The Highway Ahead by Kalle Dalheimer
In this article, Mr. Dalheimer describes some of the plans being
made for future versions of KDE.

Reviews

P-Synch: Changing the Way We Change Passwords by Tim Parker

Columns

Linux Apprentice The login Process by Andy Vaught
System Administration Caching the Web, Part 2 by David
Guerrero

This month Mr. Guerrero tells us about the definitive proxy-cache
server, Squid.

At the Forge Creating a Web-based BBS, Part 2 by Reuven M.
Lerner

Mr. Lerner continues to look at the bulletin board system,
examining the code that works with individual messages.

Focus on Software by David A. Bandel

Departments

Letters to the Editor
Letters to the Editor More Letters to the Editor

Guest Editorial Software Libre and Commercial Viability by
Alessandro Rubini

Software Libre and Commercial Viability Mr. Rubini gives us his
opinion of the Open Source movement.

Stop the Presses by Marjorie Richardson
Announcements by Sun and Troll Tech

Best of Technical Support
New Products

Strictly On-line

Color Reactiveness on the Desktop by Bowie Poag
Mr. Poag describes the InSight project which is designing a
desktop where color is used to inform the user of what is
happening with his applications.

Building Network Management Tools with Tcl/Tk by Syd Logan
LJ Interviews Informix's Janet Smith by Marjorie Richardson

Archive Index

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

https://secure2.linuxjournal.com/ljarchive/LJ/058/3139.html
https://secure2.linuxjournal.com/ljarchive/LJ/058/3216.html
https://secure2.linuxjournal.com/ljarchive/LJ/058/3040.html
https://secure2.linuxjournal.com/ljarchive/LJ/058/3121.html
https://secure2.linuxjournal.com/ljarchive/LJ/058/3208.html
https://secure2.linuxjournal.com/ljarchive/LJ/058/3252.html
https://secure2.linuxjournal.com/ljarchive/LJ/058/3285.html
https://secure2.linuxjournal.com/ljarchive/LJ/058/3284.html
https://secure2.linuxjournal.com/ljarchive/LJ/058/lte58more.html
https://secure2.linuxjournal.com/ljarchive/LJ/058/3257.html
https://secure2.linuxjournal.com/ljarchive/LJ/058/3283.html
https://secure2.linuxjournal.com/ljarchive/LJ/058/3253.html
https://secure2.linuxjournal.com/ljarchive/LJ/058/3254.html
https://secure2.linuxjournal.com/ljarchive/LJ/058/3039.html
https://secure2.linuxjournal.com/ljarchive/LJ/058/3104.html
https://secure2.linuxjournal.com/ljarchive/LJ/058/3153.html
https://secure2.linuxjournal.com/ljarchive/LJ/058/3153.html
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

COAS: A Flexible Approach to System Administration

Tools

Olaf Kirch

Issue #58, February 1999

Caldera is working on a new easy-to-use configuration tool for Linux. Mr. Kirch
gives us the details.

COAS stands for Caldera Open Administration System. It will be incorporated as
the main configuration tool in future versions of the OpenLinux distribution.

For those who have never used OpenLinux, the tool we have been using for
quite a while is called LISA (Linux Installation and System Administration), which
is basically one huge shell script using a modified version of the dialog tool to
interact with the user. When we felt it was time to move on to something new,
we of course looked at what was already available. The only viable option at
that time seemed to be LinuxConf, which had quite a ways to go before it would
become useful. Since that time it has become much better, but because we had
already started work on COAS, we decided to stick with it. Of course, we believe
our concept is better.

The source code to COAS is released under the GNU General Public License. We
feel our work might be useful to the Linux community as a whole and we want
to invite interested programmers, administrators and users to participate in its
development by offering comments contributing patches or even modules.

Vertical Modularity

The main idea behind COAS is not to provide just another administration tool,
but an entire framework for writing one. From the start, we wanted it to be a
modular application where assumptions about such things as system data
representation, file locations and dependencies are separated as much as
possible from user dialogs and vice versa. Ambitious as this goal may appear,

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

our main interest was the ability to easily adapt the tool to changes in the
underlying platform and in porting it to other Linux platforms.

I like to call this vertical modularity, because it breaks up the task of system
administration into three layers. At the lowest level are native system data files,
such as /etc/passwd, /etc/hosts or files that define the IP address for a
particular network interface.

On top of that, COAS implements an internal representation as a kind of
database. If this term made you jump in your seat and shout, “Oh no, Mr. Bill,
not a Linux Registry!”, please be assured that this is definitely not what we want
it to be. COAS is supposed to be vi-administrator friendly. We want users to be
able to switch between COAS and vi (or Emacs) administration, because even
though we hope COAS will be useful for everyday tasks, it cannot cover each
and every feature of a system component. (Consider the configuration monster
incarnate, sendmail--you can spend as much time writing configuration
software for it as Eric Allman keeps churning out new features.)

The native system files will remain the primary source of information. The
COAS data model is strictly a run-time representation of system data that
attempts to hide the on-disk representation from the upper layers. For
instance, an administration module for the BIND server should not have to
bother about where DNS zone files are located and how they are to be parsed;
all it needs is the list of DNS zones this server is a primary or secondary name
server for and the records they contain.

Having an abstract data representation also allows for alternate data access
mechanisms. For example, our database engine can store a change log of an
administration session to a file, which could then be distributed to other
machines, thus allowing for bulk updates. Also, there's the vague idea that
COAS might one day support remote access via LDAP or SNMP.

The top-most layer is the user interaction code. This code drives the dialog with
the user and controls what information is displayed to the user at what time. It
uses a standard set of dialogs, provides on-line help, etc. We decided to use a
scripting language, Python, at this layer in order to allow for rapid prototyping.
In addition to this, wrapping all lower-level functionality in Python classes and
functions provides an additional level of insulation that restricts the number of
tricks a programmer can pull. This may seem like a disadvantage to the hackers
among you, but it is truly a big plus when it comes to code maintenance.

Horizontal Modularity

You may have guessed from my choice of the term “vertical modularity” that
there is also a horizontal one, and so there is. Consider the following scenario:

a security problem or other misfeature requires you to update a component of
your system, such as the BIND name server. Alas, the update is from version
4.9 to version 8.2, which uses an entirely different configuration file format. We
could now ask you to install an all-new version of our administration tool in
order to accommodate the new configuration file format. On one hand, that is
costly in terms of bandwidth. On the other hand, making sure the tool operates
properly with all possible combinations of updates applied or not applied
would be rather time-consuming for us. The ideal solution would be to package
the DNS server administration module alongside our BIND update.

We are attempting to accomplish the following: COAS lets you rip out an entire
module, including the data model definition, Python code, message catalogs
and so on, and replace it with a different version. We have nicknamed these
CLAMs, which is short for Caldera Linux Administration Module (we invented
the acronym first and then decided on its meaning, in case you were
wondering).

Data Model

Let's take a closer look at the internal data representation. All information is
stored in a tree, with each node having an individual name. For instance, the
node containing the password of the root user is named
system.accounts.users.0.password. If you're familiar with SNMP, think of the
way SNMP variables are named.

Nodes can have different types; e.g., system is a directory, users is a list and
password is a scalar. Scalar nodes can have various constraints attached to
them; for instance, a string may be required to match a regular expression or
contain only values from a predefined set of choices. You can also attach your
own parsing and representation functions (written in C) to a scalar type,
creating custom types that do such things as convert date strings, e.g., Jun 12 or
tomorrow, to UNIX time.

All this information is provided by the so-called schema. The schema acts as a
sort of blueprint for the data model in much the same way an SNMP MIB
definition describes the types and organization of entities for SNMP.

For instance, the definition of the mouse parameters might look like this:

MODULE "PERIPHERALS/MOUSE"
MSGCATALOG "peripherals/mouse"
TYPEDEF DevicePathName STRING MATCHES
 "/dev/[a-z0-9]*"
TYPEDEF MouseProtocol STRING IN CHOICE {
 "Busmouse", "MouseSystems",
 "Mouseman", "Microsoft",
 ...
}
device RECORD {

 model STRING
 protocol MouseProtocol
 deviceFile DevicePathName DEFAULT
 "/dev/mouse"
 emulate3btn BOOLEAN DEFAULT "false"
}

This creates a record named mouse containing five scalar nodes. For instance,
model is a plain string variable, while deviceFile is a special string type whose
definition is shown above the record. The first two lines contain some syntactic
sugar that need not concern us at the moment.

%Those funky strings (|":MOUSE_EMULATE_NONE:"|)
%are tags for the COAS message catalogs.

This definition would be stored in a file named peripherals/mouse.schema
(usually below /usr/lib/coas/schema) so that the mouse configuration would be
accessible by the name peripherals.mouse.device.

When accessing data items, COAS instantiates the portions of the instance tree
from the schema definition and populates the data by invoking so-called
“mappers”. These mappers are responsible for parsing and writing back system
files, locking them if necessary. Usually, they are written in C++ and kept in
shared libraries loaded on demand. The most recent release also supports
mappers written in Python.

In the case of the mouse device, there is no standard location where this
information is stored. On a Red Hat box, for example, it is kept in /etc/
sysconfig/mouse, a file which contains a list of shell variable assignments. COAS
already has a general-purpose mapper for this type of file (it turns out that
about 80% of all system files are quite close to four or five standard formats),
so all that is left is defining the mapping. This is done by the so-called platform
repository, where we might enter code like this:

peripherals.mouse.device {
 mapper builtin.sysconfig
 path /etc/sysconfig/mouse
 relation MOUSETYPE:model:\
 PROTO:protocol:\
 DEVICE:deviceFile:\
 XEMU3:emulate3btn(map=/no=false,yes=true/)
}

The mapper keyword associates the mapper specified with the mouse device
node. When accessing the device node, the first time, COAS detects this and
invokes the mapper in order to populate the tree below the mouse device
node. The mapper retrieves the path parameter and reads the file specified.
The relation parameter tells the mapper which shell variables within the file
correspond to which data model nodes.

The same thing happens when you have modified a protocol (e.g., the mouse)
and invoke the device node's commit function. The data engine will invoke the
mapper in order to write the data back to the file. Again, the mapper will use
the specified relation to determine which data model values will be assigned to
which shell variables. Note that in an act of vi-administrator friendliness, the
mapper does not touch shell variables it does not know about and tries to
preserve comments as well as it can.

The platform information is usually installed by merging it with the main COAS
platform definition, which resides in /usr/lib/coas/repository.

User Interaction

Having written and installed the above files, you can already display and modify
the mouse configuration using COAS. For example, COAS comes with small
utilities such as coas dump and coas change that let you dump portions of the
data tree or modify individual nodes. You can even write Python scripts that
perform more complex operations on your data.

However, the ultimate goal (at least for us) is a Python module that interacts
with the user, guiding him through the administration task. The module sits on
top of the database engine and operates exclusively on the abstract data
representation. It displays data to the user, selects which items are to be
edited, provides on-line help, etc.

Why Python? Well, a very early prototype used Tcl as the scripting language, but
for various reasons it didn't work too well. In contrast to Tcl, Python has fairly
good object support and at least as good an extension mechanism. The other
candidate was Perl, but we decided against it because it is so easy to write
horrible code in Perl.

Communication with the user happens via an abstract user interface API
written in C++, which currently supports a curses and a Qt front-end. Work on
an extended Qt front-end that takes advantage of features provided by KDE is
in progress. Of course, in order to be able to use this API from Python, a Python
wrapper is provided.

The user interface provides a limited but useful set of dialogs: notice/question
dialogs consisting of a text and a few buttons; list dialogs (single- and multi-
selection, with or without check boxes, etc); prompt dialogs (containing edit
fields for one or more scalar values); and table dialogs (which display data in a
table, allowing in-place editing).

Listing 1

https://secure2.linuxjournal.com/ljarchive/LJ/058/3019l1.html

For instance, a minimal module for editing the mouse configuration would look
like Listing 1 (some of the Python fluff, such as import statements, is not
shown). For those not familiar with Python, this code defines the class Mouse,
derived from the CLAM class defined in module clam. The {__init__} method is
Python's way of declaring a constructor.

The method run is invoked by COAS. The first thing it does is look up the data
model node for the mouse device. As described above, this step will trigger the
parsing of the configuration file into the internal data representation.

Next, a prompt dialog is created and three edit fields are added for the mouse's
model, protocol and device file. The last few lines are the somewhat standard
dialog loop. Depending on whether the user terminates the dialog by pressing
the Okay or Cancel button, either the commit or cancel method (inherited from
the CLAM base class) is invoked, which displays a small question dialog along
the lines of “Do you really want to save/cancel?”

What about Labels?

The first thing that will probably strike you as odd about this example is that it
has no label strings anywhere. Nevertheless, the dialog is supposed to have a
title, edit fields are supposed to have a label to their left, etc.

The answer is that COAS generates NLS strings for you out of the information it
has. For instance, when creating the prompt dialog, we inconspicuously passed
the string mouse into the function. As a consequence, COAS will create tags
such as |":MOUSE_TITLE:"| for the dialog's title and attempt to look it up in the
module's message catalog. (The message catalog name was specified in the
class constructor.) Likewise, for the protocol edit field, it will generate the tag
|":MOUSE_PROTOCOL_LABEL:"|. All you need to do is write the message
catalog, mapping these funky strings to intelligible English (or French, German,
etc.) and install the file.

Editing Data

Looking at the sample code above, you may also have thought: I understand
where they put the data in the dialog, but how do they put it back into the data
model?

This is the interesting part about the data editing process. If you have ever
programmed Motif, you know how tedious it can be to extract the value to be
edited from the data model, put it into the dialog and write the resulting value
back to the data model when the user hits the OK button.

The approach taken by COAS is to tie data model nodes into the dialog directly
and let the dialog select an appropriate widget type (string, combo box, toggle
button, spin button, etc.). When the user provides a new value, the dialog will
automatically check the value's syntax against data model constraints and write
it back into the data model.

In our example, the dialog would create a simple string edit field for
deviceName, a pop-up list for protocol (since it is limited to a set of choices) and
a toggle button for emulation.

What's more, this mechanism offers you easy-to-use context help for each
input field, bound to the f2 key. Adding this type of help to a data item is as
easy as adding the HELP attribute to the data definition in the schema file:

device RECORD {
 model STRING HELP "HELP_MODEL"
 protocol MouseProtocol HELP "HELP_PROTOCOL"
 ...
}

These help messages will be looked up in the message catalog associated with
the schema file (remember the MSGCATALOG keyword in the schema file?) and
displayed in a pop-up dialog whenever the user presses f2.

Of course, every scheme you devise has a drawback. In this case, it is how to
cancel changes made during the execution of the dialog. When the user
presses the Cancel button, he wants all changes to go away.

This is where the marker object comes into play. The data node's getMarker

method obtains a marker for the node's change log (called a journal in COAS
lingo). When the user requests a discard of all changes, the CLAM base class
invokes self.mouse.cancel(marker), which reverts all changes made after the
marker object was obtained.

Where's the Beer? er, Beef?

I have to admit that the above example, in its simplicity, is a bit deceptive. What
I'm showing here is the simplest version of a dialog. In fact, what you see here
is just a glorious interface to the configuration file because it does not offer the
user any help or guidance. A good dialog would automatically choose the
appropriate device file when a selection is made (e.g., a bus mouse) and keep
the user from enabling three-button emulation for mice that already have three
buttons. As a consequence, your average COAS module will have a lot more
than those 20-odd lines in the example above.

However, the greatest advantage COAS offers in this context is that it relieves
you of the usual hassle when working with a GUI and lets you concentrate on
the data flow instead.

Dependency Model

Are You Curious?

If this article has piqued your interest and you would like to take a closer look at
COAS, you can find out more about it on http://www.coas.org/ and http://
developer.coas.org/. If you want to participate in the development of COAS,
don't hesitate to contact me.

All listings referred to in this article are available by anonymous download in
the file ftp.linuxjournal.com/pub/lj/listings/issue58/3019.tgz.

Olaf Kirch (okir@caldera.de) has been a Linux enthusiast since the MCC Interim
days and has authored the Linux Network Administrator's Guide as well as
various pieces of software for Linux. He has been the principal maintainer of
the Linux NFS code for several years and has been working for Caldera since
1997.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

https://secure2.linuxjournal.com/ljarchive/LJ/058/3019s1.html
https://secure2.linuxjournal.com/ljarchive/LJ/listings/058/3019.tgz
mailto:okir@caldera.de
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/058/toc058.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

Csound for Linux

David Phillips

Issue #58, February 1999

Mr. Phillips discusses some history as well as what's happening now in the
Linux Csound world.

Csound is a music composition and sound programming language originally
written by Barry Vercoe at MIT. As Nick Bailey pointed out in his October 1998
LJ article “Sculptor: A Real Time Phase Vocoder”, Barry's original MUSIC11
program was eventually ported from PDP-11 assembler to UNIX C, where it
became Csound. MUSIC11 was derived from the pioneering MusicV program by
Max Mathews, perhaps the most revered “Founding Father” of computer music
technology.

One of MusicV's major innovations was the implementation of the unit
generator, a “black box” concept that allowed great extensibility to the
language. A unit generator can be a signal generator or modifier, a patching
opcode, a sensor, or it can provide sound file I/O and signal display types.
Csound has evolved into a notable successor to Music V, quickly
accommodating new synthesis methods and DSP algorithms. It is now at the
cutting edge of modern computer music software. Linux Csound has done
more than simply kept pace with that evolution—it offers capabilities not found
with versions available on other platforms.

Enter Linux

In 1996, I wanted to try out the Linux OS. I knew certain software synthesis
languages would run under it, and those languages were not available for DOS/
Windows machines. Although Csound does indeed run under Microsoft
operating systems (and many others), I was interested in seeing how well it
would run under Linux. Jonathan Mohr had already added the real-time audio
support for Linux, but I immediately discovered I had stumbled upon another
big “DIY” (do it yourself) project. The source code available from the Bath, UK
FTP site (the primary repository for the “canonical” packages) was a general

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

UNIX package, without Linux-specific Makefiles or any other compilation
amenities. Although I was a novice at both Linux and the C programming
language, I jumped in and started thrashing. With good assistance from John
Fitch (maintainer of the Bath site and the canonical sources) and the helpful
members of the Csound mail list, I finally produced a working set of Makefiles
for the entire source tree. I soon had a fast Linux Csound with full support for X
displays, real-time audio output and all the current opcodes. Professor Burton
Beerman kindly provided an FTP site for my Linux Csound packages on his
MusTec server at Bowling Green State University, and for two years I
maintained the public version on that site and at Bath.

CSound in a Nutshell

Linux CSound: the Plot Thickens

Early in 1998, I received a message from Professor Nicola Bernardini at AIMI
(Associazione di Informatica Musicale Italiana). He had thoroughly rewritten the
Linux Csound Makefiles and wondered if I might be interested in adding them
to the source package. His offer came at a good time, as I knew the code
maintenance needed a more solid structure. Nicola's expertise was just the
right factor appearing at just the right moment. His Makefiles enabled me to
quickly prepare a variety of distribution packages (with or without X support,
static build or shared lib, real-time audio enabled/disabled, etc.) and compile a
more complete build of the source tree. Most importantly, the Makefiles
created libcsound.so, a shared library which drastically reduced the binary's
memory footprint (from about 450KB to less than 20KB).

Real-time Linux CSound

Around the same time, developer Gabriel Maldonado wrote a set of MIDI
output opcodes, allowing Csound to be used as a MIDI composition/control
instrument. Csound already accommodated MIDI input, directly from /dev/midi
or from a Type 0 Standard MIDI File (see Real-time Midi Input). Gabriel's
opcodes are different: they permit exploration into MIDI composition
algorithms simultaneously with the rest of Csound's real-time I/O.
Hypothetically, it would be possible to have a MIDI device controlling one
Csound instrument while another instrument sends its output to devaudio.
Given support for a full-duplex sound card, it should even be possible to have
asynchronous I/O for both the MIDI and the audio ports.

Alas, no routines had been written for Linux Csound that would accept the data
from Gabriel's opcodes and send it out to the MIDI port. After studying John
Fitch's code for the Windows Csound MIDI output handler, I decided to try
writing the appropriate calls for Linux. I fumbled around with the OSS/Free API
and eventually wrote the code needed to activate the requested MIDI interface

https://secure2.linuxjournal.com/ljarchive/LJ/058/3187s2.html
https://secure2.linuxjournal.com/ljarchive/LJ/058/3187s3.html
https://secure2.linuxjournal.com/ljarchive/LJ/058/3187s4.html

and accept the control data sent to it from the Maldonado opcodes. Linux
Csound was as up-to-date as any other version, and the necessary code for
MIDI output had been trivial to write, consisting primarily of a few calls to the
sound card API macros.

The CVS Repository

The next major step taken for Linux Csound was the establishment of a CVS
repository. I had been complaining to Nicola that I found myself constantly
checking everything coming to me in the canonical UNIX package, when he
suggested the need for a revision control system. He volunteered to set it up at
AIMI and after some trial-and-error hacking, he established the system we work
with today. The CVS repository maintains separate directories for the canonical
sources and the Linux-specific code. In this way, we can avoid rewriting sources
just for Linux and we are always able to refer back to the “untouched” originals.
Anonymous access to the CVS is permitted, but submissions for changes are
carefully screened by the maintainer.

The Csound UNIX/Linux Development Group

Of course, a CVS development repository isn't of much use unless it has
developers contributing, so a logical next step was the formation of the Csound
UNIX Development group. Programmers Robin Whittle and Damien Miller
joined in immediately, and Damien kindly provided a web page with all
pertinent information for anyone interested in joining the group. It is worth
noting that the group is for development, not just developers. We welcome
anyone interested in seeing Linux Csound grow into the finest language of its
kind. Programmers are certainly welcome, but so are musicians, audiophiles,
DSP engineers and anyone else with an interest in Csound and its possibilities.

In October 1998, two new members made significant contributions to the
group's activities. Gabriel Maldonado donated his entire source tree to the CVS
repository, which enables Linux Csound to keep up with the developments for
his Windows versions. (This generosity is quite typical of the Csound
community. Much code sharing occurs on the Csound mail list, with new
instrument designs freely offered, along with much healthy debate over various
computer music issues.) The other signal addition has been Fred Floberg,
whose contributions require special description.

Csound's internal support for real-time audio has been dependent on calls to
the API for the OSS sound-card drivers. While certainly sufficient for casual use,
many sonic notions such as full-duplex and multiplexed real-time audio I/O are
not realizable by the OSS/Free driver. However, the ALSA driver does indeed
support those uses; thanks to code from Fred Floberg, Linux Csound now
explicitly supports the ALSA interface. (The ALSA project, led by Jaroslav Kycela,

is forming a new extended sound system API compatible with OSS/Free, but
permitting much more advanced uses for sound-card features not supported
by OSS/Free.) Fred is currently working on expanding MIDI file support. Csound
now supports only Type 0 MIDI files, but Linux Csound should soon support the
Type 1 and perhaps even the Type 2 Standard MIDI File formats.

Also, thanks to Robin and Damien, the Linux Csound distribution now supports
the popular RPM packaging and can be built for glibc (libc6) systems. Debian
users will be pleased to note that developer G<\#252>nter Geiger has prepared
a package in the DEB format. Finally, Nicola Bernardini has written a Csound
orchestra (instrument design) parser, which we hope will eventually be
absorbed into the package. Such a utility is most helpful to a GUI designer,
which brings me to my next topic: the power of Linux Csound and X.

The X Picture

My Linux soundapps web page shows more than twenty entries in the “Csound
Helpers” section. The brief descriptions which follow are just that—brief
descriptions which in no way indicate the full power of these applications. The
examples shown here are for Linux systems running X; some excellent
command-line utilities exist too and are included on the Linux soundapps page
for those tools. All of these utilities work with the current versions of Linux
Csound (3.47 or higher).

Note that each of these applications was built using freely available tools. The
GNU C and C++ compilers, Tcl/Tk, Java, LessTif and WINE are powerful allies in
the advancement of Linux sound and MIDI software. Their developers are to be
commended for the wonderful work they have done for the good of the Linux
community.

Cecilia

Cecilia (by Jean Piche and Alexandre Burton at the University of Montréal) is a
fully-developed Csound composition and sound-processing environment.
Written entirely in Tcl/Tk, Cecilia utilizes the entire range of possibilities
afforded by Linux Csound, presenting a beautiful graphic interface
(customizable, of course) and a powerful composition language (Cybil).
Numerous real-time controls are supported, nearly all aspects of the program
are user-definable, excellent on-line help is available and the GUI fully exploits
Tk in the X environment. Cecilia won first place in the awards for computer-
aided composition and realization software at the 1997 Second International
Music Software Competition in Bourges. (See Figure 1.)

Figure 1. Cecilia

https://secure2.linuxjournal.com/ljarchive/LJ/058/3187f1.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/058/3187f1.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/058/3187f1.jpg

Rain

At the other end of the scale is developer Matti Koskinen's rain, a GIF-to-Csound
score converter. A Csound score is the control file for a Csound instrument,
providing it with such values as event start times, durations, amplitudes and
frequencies, waveform selection and so forth. Matti's utility simply takes a GIF
image, applies some user-defined values and magically translates it into a
Csound score. The score can then be synthesized and played from within the
application, or it can be saved to disk for later processing (perhaps in Cecilia).
(See Figure 2.)

Figure 2. Rain

Adsyn

Adsyn is a graphic editor for Csound “hetro” analysis data files. hetro is one of
the Csound sound file utility programs and its operation is quite simple. Using a
heterodyne filter bank, it analyzes a sound file and creates a data file of
separated frequency and amplitude values. That data file can be read and
graphically represented by Adsyn and the frequency and amplitude
components can be freely altered using the mouse. Csound's resynthesis
opcode (adsyn) can be called; the edited file can then be synthesized and
played from within Adsyn. Professor Oyvind Hammer originally wrote Adsyn for
SGI machines at NoTAM, a Norwegian center for music and acoustics research.
With his good graces, I began the port to Linux. It was finished with much
assistance from Nicola Bernardini. (See Figure 3.)

Figure 3. Adsyn

Ceres2

Ceres2 is Johnathan Lee's enhanced version of Oyvind Hammer's Ceres,
described in my September 1998 LJ article “Porting SGI Audio Applications to
Linux”. Johnathan greatly extended the editing capabilities of the original
software engine, which essentially performs a Fast Fourier Transform (FFT) on a
sound file and renders a graphic representation of its frequency content and
activity. The graphic display can be edited in various ways, a large number of
transforms (spectral mutations) are available, up to three graphic linear control
functions may be specified and a variety of output formats are supported,
including two types of Csound scores. Ceres2 also extends some of the
command-line analysis variables such as FFT size, analysis window size and
window overlap. The Linux port was done by me, but it was dependent on work
already done on the original Ceres with great help from Richard Kent, who also
supplied the invaluable tichstuff libraries which replace the SGI libs. (See Figure
4.)

https://secure2.linuxjournal.com/ljarchive/LJ/058/3187f2.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/058/3187f2.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/058/3187f2.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/058/3187f3.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/058/3187f3.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/058/3187f3.jpg

Figure 4. Ceres2

Rosegarden

The Rosegarden suite includes a MIDI sequencer, a common-practice music
notation display and the very nice feature of being able to save your work as a
Csound score file. Such a tool is especially helpful for users most comfortable
with standard notation conventions, allowing them to compose with their
familiar symbols and then easily convert their creations for use with Csound
instruments. (See Figure 5.)

Figure 5. Rosegarden

HPKComposer

The Java programming language lends itself to the easy creation of platform-
neutral user interfaces. Jean-Pierre Lemoine's HPKComposer is an excellent
example of a “pure Java” application, running under Windows, Mac OS and
UNIX variants. Preparation for Linux is straightforward, depending upon
successful installation of the Java development environment (JDK) in version
1.1.6 or higher, the Swing class libraries (version 1.1 beta3) from Sun
Microsystems and Csound. HPKComposer blends aspects of the CMask
program with the synthesis and DSP methods of Csound: tendency masks are
used to create composition algorithms, which are realized by the synthesis
engines (opcodes) of Csound. VRML displays are supported, the program is
user-extensible, and although Java's current sound support is limited to 8-bit 8
kHz audio, when JDK 1.2 arrives it will support 16-bit 44.1 kHz CD-quality sound.
(See Figure 6.)

Figure 6. HPKComposer

PatchWork

Russell Pinkston's PatchWork for Win95 is a graphic “patcher” for the design of
Csound instruments. Although a UNIX/Linux version of this program exists
(XPatchWork), it has not been maintained and is in need of some serious
debugging. However, the Linux WINE Windows emulator can run the Win95
version, proving once again that Linux always finds a way. (See Figure 7.)

Figure 7. PatchWork

SoundSpace

Developer Richard Karpen has generously shared many of his opcodes with the
general Csound community, one of which is called “space”. In the Csound
manual entry for space is a mention of a GUI for creating the values needed by

https://secure2.linuxjournal.com/ljarchive/LJ/058/3187f4.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/058/3187f4.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/058/3187f4.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/058/3187f5.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/058/3187f5.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/058/3187f5.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/058/3187f6.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/058/3187f6.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/058/3187f6.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/058/3187f7.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/058/3187f7.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/058/3187f7.jpg

the GEN28 stored-function table, and SoundSpace is that GUI. Written in core
Java, this unique utility provides a visual interface for determining the
placement and sonic trajectories of up to 8 sound files in the auditory space,
with support for stereo and 4-channel output. (See Figure 8.)

Figure 8. SoundSpace

Into the Future

What is still to come? By the time this article is published, I hope to have some
more Csound/Java applications running. Developer Michael Gogins has
expressed great interest in seeing his “Silence” Csound environment running
under Linux Java, and the prestigious IRCAM Music and Sound Research Center
announced that a Linux version of their MAX for Java will be available at the end
of 1998. Who knows; maybe someday I'll get around to completing my Tcl/Tk
clone of Csounder, the popular Csound “launcher” for Windows (or at least get
it working better under WINE).

The most recent versions of Linux Csound (3.49.xx and up) can be built for use
on the 64-bit DEC Alpha. Thanks to developer Ed Hall, Linux Csound can claim
to be the first 64-bit music and sound composition language widely and freely
available to the public.

Nicola Bernardini continues to improve the distribution packaging: building
Linux Csound is easier than ever, thanks to his incorporation of the configure

utility. Work proceeds on accommodating autoconf and automake, since it is a
primary objective to use the best tools available for creating the best possible
distribution.

One of the intriguing problems facing the development group is how to make
Csound re-entrant, enabling a plug-in architecture for Csound. To many of us,
such an undertaking would mean a complete rewrite of Csound, and who
knows where that might lead—“Son of Linux Csound”, perhaps? If you would
like to join a very interesting distributed development project, take a look at the
links listed in Resources and feel free to join the development group mail lists.

Richard Boulanger is a professor at the Music Synthesis Department of the
Berklee College of Music. In the spring of 1999, his Csound book will at last be
published by MIT Press. On one of the included CDs, you will find an article
(which will, of course, be out of date by then) about running Csound under
Linux. Yes, it was written by me, but I don't mention it to blow my own horn.
This book is a massive tome and it includes contributions from all the major
(and some not-so-major) members of the international Csound community. It
should inspire many new users, several of whom will discover for the first time
that Csound is available on the Linux platform.

https://secure2.linuxjournal.com/ljarchive/LJ/058/3187f8.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/058/3187f8.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/058/3187f8.jpg

Final Words

Linux Csound offers terrific possibilities for real-time computer music
performance. Along with advances in real-time support, Linux Csound can be
expected to stay at the cutting edge of synthesis methodologies, interface
design, DSP algorithms and composition strategies. It is an ideal tool for
contemporary sonic exploration and it demonstrates once again the flexibility
and power of Linux, the cutting edge OS for the modern musician.

Resources

David Phillips (dlphilp@bright.net) is a composer/performer living in Ohio.
Recent computer-music activities include an ambient composition for the artist
Phil Sugden, lecturing on computer-music programming languages at Bowling
Green State University, and maintaining the “official” version of Csound for
Linux. Dave also enjoys reading Latin poetry, practicing t'ai-chi-ch'uan, and any
time spent with his lovely partner Ivy Maria.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

https://secure2.linuxjournal.com/ljarchive/LJ/058/3187s1.html
mailto:dlphilp@bright.net
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/058/toc058.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

Hunting Hurricanes

C. Wayne Wright

Edward J. Walsh

Issue #58, February 1999

The authors tell us about hunting hurricane using the Scanning Radar Altimeter
based on the Linux system and analyzing the data with Yorick.

Figure 1. Front View of NOAA-43, One of Two WP3Ds

In March 1998, we started development of a new Linux-based data system for
the NASA Goddard Space Flight Center scanning radar altimeter (SRA). The goal
was to significantly reduce the system weight and volume to enable its
installation on one of the NOAA hurricane hunter WP3D aircraft (see Figure 1)
for the 1998 hurricane season. The SRA measures hurricane directional wave
spectra and storm surge. The data will ultimately be used to help refine and
improve hurricane models and improve forecasting and understanding.

The 1998 hurricane season was quite active and the SRA successfully flew in
hurricanes Bonnie, Earl and Georges, collecting almost 50 hours of actual
mission data.

Our principal obstacle was the short time frame until we needed to be
operational onboard the hurricane hunter. The size, weight, complexity and
power consumption of the SRA were also critical design items because of floor
loading considerations and the limited payload capacity of the P3 aircraft when
operating on long (10-hour) missions in turbulent weather conditions
(hurricane-eye wall penetrations). Interrupt response time, crash-proofness
and freedom from “lock-ups” were all important considerations when choosing
the operating system for the SRA.

The new SRA data system, built on top of a Red Hat 4.2 system and Linux kernel
2.0.29, occupies eight inches of vertical rack space, weighs about 40 lbs, runs
totally from an internal 12-volt aircraft battery and requires about 120 watts of

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1
https://secure2.linuxjournal.com/ljarchive/LJ/058/3212f1.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/058/3212f1.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/058/3212f1.jpg

total input power. It includes a custom ISA board with several PIC microchips
which perform dedicated functions for the radar. It also includes the entire
radar IF (intermediate frequency) strip, detectors and a 2ns/point waveform
digitizer. No monitor or keyboard is directly connected to the SRA; instead,
Linux laptops are used for all control and display. Those laptops run Red Hat
5.1 and 2.0 Linux.

The RT-Linux (Real-time Linux) software does the following:

• Drives the waveform digitizer.
• Computes the centroid-based range measurement between the transmit

and return pulses.
• Manages 96 automatic gain control loops.
• Corrects for aircraft attitude and off-nadir angle.
• Deposits formatted data in a shared memory block from which a normal

Linux program extracts and records it to a disk file.

The SRA makes extensive use of Tcl/Tk and the Blt graphics library for real-time
display.

Post-processing of SRA data is done with Yorick, a free and very powerful
programming language that runs on Linux, a wide variety of other UNIX
platforms and MS Windows.

Background

The previous implementation of the SRA was developed in 1988 using an array
of 68020s on a Multi-bus-I backplane, a CAMAC crate full of nuclear physics
instrumentation and a combination of UNIX and VRTX (VRTX is a real-time
kernel). VRTX ran on real-time processors and UNIX ran on the system host. The
CAMAC crate was quite heavy, consumed considerable power, occupied
substantial rack space and was expensive. It used hardware time-interval units
(TIUS) to measure the time for a radar pulse to travel from the aircraft to the
ocean and back. It used “threshold detection”, which caused the TIU to stop and
a CAMAC-based waveform digitizer to acquire the return waveform. The
waveform data required its own 68020 processor to “process” each waveform
and extract certain data. The data were used to refine (post-flight) the range
measurement made by the TIU. Threshold TIUs suffer from an effect known as
“range walk”, which causes the measured range to vary as a function of the
strength of the return pulse. The array of processors communicated with each
other via a 4MB memory card which resided on the multi-bus. Control of the
system was via a character-based terminal and real-time display was done on
an SBX Matrox graphics module which was managed by its own 68020
processor. One of the 68020 processors ran UNIX; that processor ran programs

which extracted radar data from the 4MB card and stored it on a 9-track
magnetic tape or a disk file. The UNIX processor hosted all software
development and managed the operator control terminal.

Due to its volume, weight and power consumption, we were unable to install
this version of the SRA on the hurricane hunter. Limitations in the hardware
signal-tracking circuits would frequently falsely trigger the system on a side
lobe and effectively eliminate the true range measurement.

SRA System Description

Figure 2. Block Diagram of the SRA Sensor

The SRA is an airborne, 36GHz, down-looking, raster-scanning pulsed radar. A
simple schematic block diagram of the sensor is shown in Figure 2. Its one-
degree beam (two-way) is scanned across the aircraft flight track and a precise
time-of-flight measurement is made for each of 64 pulses transmitted at 0.7
degree intervals across the scan. As the aircraft proceeds, a topographic image
of the surface (normally ocean waves) is developed, recorded and displayed.
The nominal ranging accuracy of the SRA is 10cm. Three differential carrier-
phase GPS receivers are used to measure the exact location of three GPS
antennas mounted in an array on top of the aircraft. A ground-reference GPS is
set up where the flight originates and the ground and aircraft GPS data are
processed post-flight to produce an aircraft trajectory, typically accurate to
about 30cm in our application. Higher accuracies are possible when operating
under less stressful flight conditions.

Figure 3. The SRA Scanner Assembly Mounted on the NOAA P3

The Radar Components

The SRA radar consists of a 20-inch Rexalite lens, a feed horn on the lens axis
which looks up into a mechanical scanning mirror that mirror-images the feed
horn to the focal point of the lens, a pulse modulator and RF exciter, receiver,
1.7KW Extended Interaction Amplifier (EIK) and the RT-Linux data system. The
data system is the topic we will discuss here. Figure 3 is a photograph of the
SRA scanner installed on the NOAA hurricane hunter. The fairing is removed in
this photo.

Figure 4. SRA Data Power System

Figure 4 is a block diagram of the SRA power system. The SRA requires an
uninterruptible power source for Linux and the three differential GPS receivers
and computers. Instead of an off-the-shelf UPS, we went with a 12-volt 25 AH

https://secure2.linuxjournal.com/ljarchive/LJ/058/3212f2.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/058/3212f2.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/058/3212f2.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/058/3212f3.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/058/3212f3.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/058/3212f3.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/058/3212f4.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/058/3212f4.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/058/3212f4.jpg

“RG” (recombinant-gas) sealed aircraft battery as the prime power source for
the system. This was chosen for two reasons:

• We needed an uninterruptible power source, because aircraft are
notorious for power dropouts during engine start and shutdown.

• We needed to power our 12-volt GPS receivers for up to an hour before
and after each mission without aircraft power applied.

We purchased a 12-volt input 150W PC power supply to power the data system.
The battery can power the data system and the three GPS receivers for about
two hours, or the GPS receivers alone for five hours. We located the battery in
the rear of the custom data system housing.

Figure 4 depicts the wiring of our power system.

Figure 5. Block Diagram of the SRA Data System

Figure 5 is a block diagram depicting the internals of the SRA data system. The
computer is a single-board 200 MHz Pentium which plugs into a passive
backplane with ISA and PCI slots. The CPU card contains PCI-VGA video, PCI-IDE
controller, PCI fast-wide SCSI controller, 64MB of RAM, 512MB of cache, two
serial ports, a parallel port and the CPU. A PCI 3c595 network card provides
networking and a special-purpose ISA card loaded with PIC microcontrollers
provides an interface to the radar systems. A 6.4GB EIDE disk drive is used as /
dev/hda to hold Linux and for data storage. A backup SparQ 1.0GB removable
drive is installed as /dev/hdb. The system has no floppy or CD-ROM drive. If a
CD or floppy is needed, they are simply remotely mounted with NFS from one
of the Linux laptops which have both. No keyboard or monitor is used for
normal operations, though they can be plugged in if the need arises.

Figure 6. The SRA Data System during Development

Figure 7. View of SRA Data System Internals

Initially, we used a 4.2GB SCSI drive, but that used too much electrical power.
Early development was done using a 250W 117vac PC power supply. When we
switched to the 12-volt input 150W power supply, we discovered we were over
our power budget by 25 watts or so. During the boot process, the power
consumed by the combination of the SCSI drive and the waveform digitizer
would cause the power supply to “spike” the 5-volt source and cause a reboot.
It took us several hours to find this problem. It would generally happen just as
Linux began loading, due to the digitizer being powered up and the drive being
accessed. During the DOS boot, the digitizer was not powered until after DOS
booted and after the digitizer configuration program loaded and ran.
Consequently, the loading of Linux was the straw that broke the camel's back.

https://secure2.linuxjournal.com/ljarchive/LJ/058/3212f5.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/058/3212f5.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/058/3212f5.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/058/3212f6.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/058/3212f6.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/058/3212f6.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/058/3212f7.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/058/3212f7.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/058/3212f7.jpg

We finally settled on a 6.4GB EIDE disk drive for Linux and for data storage. The
power consumption of the EIDE drive is substantially less than the SCSI and no
perceptible difference is seen in performance of the data system.

Figure 6 is a photo of the SRA data system during development. It was in this
“state” until just a few days before our first test flight on the NASA C-130. Figure
8 is a photo of the data system after packaging. Figure 7 shows the internal
organization of the data system as viewed from the top rear. The enclosure is
reversed from most rack mounts. We wanted to have ready access to the
computer card connections without having to remove the rear rack cover. The
only connections on the rear are for the GPS receivers and the battery charger.
The black power supply under the data system in Figure 8 is our prime power
supply/battery charger.

Figure 8. Data System after Packaging

2ns PCI Waveform Digitizer, DOS, GageScope

The core data acquisition device in the SRA is the GageScope 8500-PCI
waveform digitizer. It provides for up to 128KB of sequential samples taken
every 2ns (nanoseconds). This permits us to digitize a 256-microsecond
waveform. We actually digitize for 60 microseconds, beginning a few hundred
nanoseconds before the radar pulse is transmitted and ending after enough
time has expired to accommodate a signal return from our highest possible
altitude. The pulse takes 2 microseconds to travel 1000 feet and return, so to
accommodate a maximum altitude of 30,000 feet, we need to digitize at least
60 microseconds. Since a point is digitized every 2ns, there will be 30,000 points
in each waveform. We don't read all 30,000 points out of the digitizer. We
“track” the position of the returns and read out only 256 points centered
around where we expect the return to come from. Since the ocean is basically
flat, this technique works well.

The driver code provided by Gage for the 8500 supports DOS, Windows and
Windows NT. It is extensive, to say the least. It contains several thousand lines
of code solely to initialize most of the cards that Gage makes to an operational
state. Apparently, much of the functionality of the card is loaded into
programmable Logic Arrays from the DOS driver. The Gage driver code
supports virtually every waveform digitizer made on several different OS
platforms. They make extensive use of conditional compilation to select both
the desired digitizer board and the desired operating system. They attempt to
establish an isolating layer of driver code, so that a common set of driver calls
appears to the users of their supplied library.

After looking at the driver start-up code, we though it might take more time to
port the start-up code to Linux than we could afford. In order to avoid porting

https://secure2.linuxjournal.com/ljarchive/LJ/058/3212f8.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/058/3212f8.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/058/3212f8.jpg

the long and complex start-up code, we elected to make the system dual boot
Linux and DOS. This scenario has worked well, permitting us to get a DOS
program going quickly which would configure the digitizer. After the digitizer is
configured, the autoexec.bat DOS script loads Linux using loadlin, a DOS
program which can load a Linux kernel from DOS. The DOS digitizer start-up
code leaves the digitizer in a known functional state. The code required to use
the digitizer is actually not very extensive and only requires accessing a few
registers and memory locations on the Gage card. The folks at Gage were very
helpful in getting it working.

Hardware Interrupts

Waveform data are extracted from the digitizer after a radar pulse event has
occurred. One of the 16C65A microcontrollers controls all aspects of triggering
the transmitter, actuating various gates, triggering the waveform digitizer and
finally interrupting the Linux waveform digitizer interrupt handler.

Figure 9. RT-Linux Interrupt Jitter

The RT-Linux interrupt typically responds in 2 microseconds (on our 200MHz
Pentium) with occasional jitter to several microseconds. When we did this same
test with MS Windows a couple of years ago, we found the fastest response to
be on the order of 50 microseconds (486-dx2 66MHz) with jitter well into tens
of milliseconds. It is incredible just how responsive Linux is to interrupts. Figure
9 is a digital scope capture, where the top trace rising edge is the actual
hardware interrupt signal on the ISA backplane. The bottom trace is a hardware
signal generated by the interrupt code. It simply wrote a “1”, waited awhile,
then wrote a “0” to the printer port. Each horizontal division is 2 microseconds.
This demonstrates the typical latency of our RT-Linux system. Concurrent with
this test, we ran a find command in another xterm so the system had
something to do.

Microcontroller Board, 16c65a

Microcontrollers permit very hard and reliable real-time capabilities. They are
well-suited to replacing arrays of chips and digital logic in many applications
such as the SRA. We designed a special ISA interface board for the SRA which
encompasses most of the special requirements of the radar and special
interfaces.

The board is presently populated with four Microchip 16C65A microcontrollers.
One microcontroller implements a real-time clock which automatically
maintains time-of-day synchronization with our GPS receivers. It has a least
significant fractional time bit of 200 nanoseconds and provides the SRA with up
to 64 bits of accurate time information. This chip automatically captures the

https://secure2.linuxjournal.com/ljarchive/LJ/058/3212f9.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/058/3212f9.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/058/3212f9.jpg

trigger time for each radar pulse. It and its neighbors can all be read and
written by Linux.

A pair of microchips function together to convert the scan encoder pulse trains
into radar trigger events. As our scan mirror rotates, a scan encoder measures
the scan angle. At our scan rates, it produces a pair of 40KHz square-wave
signals which are 90 degrees out of phase. One microchip is programmed to
combine these two signals together and produce a single 80KHz signal, which is
then counted to determine the position of the scanner. The second microchip is
programmed to count the 80KHz signal and initiate a radar pulse at predefined
angles. With its 200ns instruction time, this microchip directly controls all
aspects of the transmitter and receiver electronics and also generates an
interrupt to Linux once a waveform has been acquired by the waveform
digitizer. For each SRA pulse, this microchip:

• Protects the receiver front-end from damage.
• Verifies that the receiver is protected.
• Gates the digitizer on.
• Gates the EIK amplifier on.
• Delays exactly 200ns.
• Triggers the transmitter modulator to generate an 8ns pulse and causes

the real-time clock microchip to capture the present time.
• Delays 200ns for the transmit pulse to be well clear.
• Enables the receiver to receive return signals.
• Interrupts the RT-Linux SRA module to extract the waveform data from

the digitizer.

RT-Linux

RT-Linux is a patch which gives Linux many of the most important features
needed by real-time programmers and embedded-system designers. It is
implemented as a set of modules which can be installed and removed using
insmod and company. You also use insmod to install any real-time code you
write. RT-Linux programs execute in the kernel space and have full access to
the system hardware and kernel code as well.

We've done a considerable amount of development using Turbo-C and DOS in
the past, and it is truly amazing how infrequently we had to reboot Linux during
development of the SRA. Back under DOS, we usually had to reboot several
times per day. With Linux, we had to reboot only three or four times during the
entire development period.

Shared Memory

Figure 10. SRA Memory Usage

Once the RT-Linux programs/modules capture the data, they must be written to
storage and displayed for the system operator. We accomplish this by using
shared memory. The SRA has 64MB of RAM and we configured the kernel to
boot using mem=61m which causes the kernel to manage only the lower 61MB,
leaving 3MB untouched. It is this 3MB that we use for real-time data capture
and as a common communication buffer area between RT-Linux modules and
normal user-space programs. Figure 10 depicts the SRA memory usage.

We wrote a single C program (rgc.c) which provides most of the interface
between Linux user mode and RT-Linux. This program is a simple command-
line style program with tons of commands to read and write data space in
common between RT-Linux and user space. Most of our Tcl/Tk scripts merely
open a pipe to this program and use it to pass commands and extract data
from the system. The program can also be used directly from the command
line. This makes development and debugging simpler.

One of the run-line options to rgc causes it to loop, testing for data to be
written to disk. If no data are ready, the program sleeps for one second. If data
are ready, they are extracted and written to the specified disk file.

Linux Laptops

We use up to five laptops on the SRA at once: three for collecting GPS data (one
laptop for each GPS receiver) and two for control and display of real-time SRA
data. A personal laptop is used for control, and if we're both on the flight, we
can both run several instances of the same display programs using another
personal laptop. We each have our favorite color-bar for the image of the sea.
We'll frequently use one machine to control the SRA and the other to write or
modify display or system software as we're flying. The laptops are Chembook
9780s. Each has a 4GB internal hard drive and a modular 6.4GB drive (in place
of the floppy), a 14.2'' XGA LCD display, PCMCIA Ethernet card and a 233MHz
Pentium-Pro CPU.

Each of these machines dual boots either Red Hat Linux 5.1 or MS Windows 95.
To use the laptops as X terminals, we boot Linux, then run the Xfree86 server.
We run the X server such that the laptop becomes an X terminal for the SRA
data system. This puts most of the burdensome display processing on the
laptop processor, since the X server seems to be where the CPU cycles go.
There are two ways to cause X to act as an X terminal. The first is:

X -query

https://secure2.linuxjournal.com/ljarchive/LJ/058/3212f10.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/058/3212f10.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/058/3212f10.jpg

and the second:

X -indirect

The target machine must be running XDM (X display manager) for this to work.
The first method will link directly to the target machine, where you see a typical
XDM login prompt. This first method is what we use when controlling the SRA
data system. The second method will give you a list of all the machines known
on the network to support XDM or X terminals. It is useful back at the lab where
many potential hosts are available to pick from.

You can even have two or more X servers running at once. Here's an example:

X -query first-machine
X :1 -query second-machine
X :2 -query third-machine
X :3 -query fourth-machine

You can get a local X server going with the command:

startx -- :4

The SRA system configured for storm-surge measurements consists of three
Chembook Pentium laptops which dual boot Linux and DOS. The GPS data
acquisition program was written for DOS, so each laptop runs this DOS
program when collecting the GPS data. After the mission, we reboot the
machines to Linux and transfer the data to the SRA data system where it is
archived with the other mission data. Once it is all together, we transfer it to
the two laptops. In this way, we have triplicated the data. We then take the
laptops with us back to the hotel and begin analyzing the data. All five laptops
and the SRA data system are on a 10baseT Ethernet network.

GPS and RS-232 Aircraft Data

Some aircraft data are read via RS-232. For this, we are using the standard /
dev/ttySxx ports and drivers. The aircraft data are in a 9600 baud stream
occurring once per second and the GPS produces a position message twice per
second. We use our GPS message to drive a simple Blt plot of the latitude
versus longitude, so we can track the progress of the flight.

The RS-232 data are actually captured by the rgc program, since the RT-Linux
modules can't make use of the native Linux drivers and we didn't need to
rewrite drivers that were working perfectly. Once the data are read, they are
copied to the shared memory area above 61MB where any of the programs can
access it. Normally, it is accessed by another invocation of rgc and read.

Pitch, Roll, Heading and Track Angle

Accurate aircraft attitude, heading and track angle data are critically important
to the SRA in real time. The pitch-and-roll attitude of the aircraft is taken from
the on-board Inertial Navigation Units (INU), using Synchro-to-digital converters
—one for each parameter. These are read by the RT-Linux module during each
scan line. The heading and track information is presently provided via RS-232
from the on-board aircraft data system, which has a direct interface to the
INU's digital data stream.

Resulting Data (Radar, GPS, Aircraft)

The SRA radar data are written to disk files by the rgc program. The aircraft
data are captured by a separate program and written to a separate disk file.
This data is normally captured for the entire duration of the flight, providing a
complete flight record in a single file. The carrier-phase GPS data are captured
continuously from 45 minutes before the flight until 45 minutes after the flight.
The pre- and post-mission data are necessary to resolve the aircraft position to
the centimeter level.

System Software Development

Before any Linux development was carried out, we felt it necessary to write
some DOS code to work with the Gage digitizer board. Turbo-C version 5.0 was
required to compile and use the Gage-supplied library. Once we were
successful in getting a Gage example program to work on DOS, we worked with
Gage engineers to communicate directly with the digitizer using a normal user-
mode program. The main trick was to make the DOS program configure the
digitizer and then exit without powering it down. The second trick was to boot
from DOS into Linux; this turned out to be quite easy with loadlin.

We determined the PCI board settings for the digitizer by reading /proc/pci and
then hard-coding various test programs with the values. We wrote various
normal user-mode programs to become familiar with the digitizer. We were
able to manipulate the digitizer card in every way except handling interrupts.
The gdb debugger was a big help throughout the development.

Microcontroller Software Development

A substantial part of the SRA software is actually firmware resident on various
microchips.

Microchip provides, at no cost, a very complete and easy-to-use development
package for their 16C65A (and other) microcontrollers. It sports a
comprehensive simulator, making it possible to watch simulated execution of

quite extensive programs. The only downside is the system runs only on MS
Windows.

RT-Linux

The RT-Linux extensions provide just the right features for a real-time data
system such as the SRA. The extensions provide much more capability than we
actually use in the SRA. We use it to start an RT task at the end of each raster
scan. The task processes all the data captured during the previous scan and
makes a number of calculations necessary to configure the system for the next
raster.

Linux User to RT-Linux Interface

Figure 11. SRA Progam Block Diagram

We wrote rgc.c to be a liaison between normal user processes under Linux and
the RT-Linux SRA module. Quite simply, rgc sets up a pointer to the shared
memory space that the SRA RT module uses for data storage. They understand
each other because they share a common .h file defining the data organization
in the shared memory space. Figure 11 depicts how the various SRA real-time
programs communicate with each other. rgc usually reads commands from
stdin and writes to stdout. If it is invoked with certain switches, it forks and polls
for RS-232 data and/or writes captured data from the shared memory to disk,
all the while taking its commands from stdin. The command set is simple ASCII
strings such as set thresh 24 or get roll. The Tcl/Tk programs each open a pipe
to their own private rgc, then send commands and receive data back.
Everything is done this way except the topographical image display. That
program, creep.c (because it creeps up the screen), accesses the shared
memory directly. The main reason for concentrating everything into rgc is that
it generally means we need only recompile rgc, creep and the SRA module
when something is added or removed in the shared memory area. In short, it
makes for quicker development.

Linux X Terminal—System Display and Control

Figure 12 is a screen shot of the SRA control laptop during hurricane Bonnie's
landfall. The image on the left side of the screen is the real-time topographic
display. It is gray-scale encoded so that the higher things are, the more white
they appear; the lower, the darker. This image clearly shows waves on the left
side of the image, the beach in the center and a very distinct dune line. We also
have a color-encoded version of this program, but its interpretation is not as
intuitive. The blue/brown display represents the attitude of the aircraft. It is a
short Tcl/Tk script which reads aircraft attitude data captured by the SRA RT-
Linux module.

https://secure2.linuxjournal.com/ljarchive/LJ/058/3212f11.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/058/3212f11.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/058/3212f11.jpg

Figure 12. SRA Screen in Operation during Bonnie.

The bright green display shows how we control and designate the operating
conditions for the SRA. At this time, we manually find the return signal using
the slider. Once found, we click the “auto” button and the system will keep the
ground in the center of our digitizer window, regardless of aircraft altitude
variations. The flight map is yet another short Tcl/Tk program. It extracts GPS
position data from the shared memory area and uses it to map our position.

TK, Blt, Xview

Tcl 7.6 and Tk 4.2 with Blt 2.3 are used extensively in the SRA. Initially, we
thought it might be useful only for prototyping, but it soon became obvious
that the X server would be the display bottleneck and not Tcl/Tk.

During development and before we purchased the laptops for control, we used
a monitor connected directly to the SRA system. This meant that the X server
would run there too. When we began experimenting with using a remote X
server, we quickly discovered that the burden of the X server had also moved to
the remote system. This was a no-effort way to automatically distribute the
load across one or more computers in the system.

We wrote the image display in C using the Xview library. We used this library
because we already had a book about it, and it didn't look too difficult to use. It
writes each scan line directly to the display and simultaneously to a “pix-map”.
When a “repaint” event occurs, the pix-map is used to repaint the whole image.
A great way to put a load on the display computer X server is to grab the image
map and move it around the screen. The load on the displaying computer will
go through the roof, but the data system will remain unaffected.

Data Analysis—Yorick

Once we had some SRA data, we obviously needed to build some software to
review it. We wanted to have SRA processing software on several machines and
without licensing hassles. That way, we would be able to develop programs at
home, on an office laptop (which is also used to control the SRA), on the SRA
data system computer and on office Linux and Windows PCs. In total, we
needed processing on at least five to ten different systems. We considered IDL,
Matlab and Yorick. Our tool of choice for processing was Yorick. It is free, very
powerful and will run on a wide variety of platforms including almost every
UNIX machine known, Linux and Windows. It has the ability to save data so it
can be read on a big-endian or little-endian machine.

Figure 13. Initial Data Product from Yorick Showing Surface Topographic Images
Superimposed on NOAA Wind Plots

https://secure2.linuxjournal.com/ljarchive/LJ/058/3212f12.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/058/3212f12.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/058/3212f12.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/058/3212f13.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/058/3212f13.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/058/3212f13.jpg

We first heard of Yorick from an article in Linux Journal (“The Yorick
Programming Language”, Cary O'Brien, July 1998). We downloaded it and gave
it a try. We like its C-like syntax and ability to load (and reload) individual
functions of a program. This makes for a very powerful and flexible
development environment. One of its best features is its cost—free! To put
either Matlab or IDL on all the machines would have been prohibitively
expensive. Since we have Yorick on the SRA data system and on the controlling
laptop, we can easily analyze data in the field with minimal effort using the
Linux laptop. Figure 13 shows topographic images from the SRA overlaid on a
wind field plot from the August 24th flight. The sea state was above 18 meters
(60 feet) on the northern flight line.

Results

We had two or three short test flights on the NASA C-130 aircraft before we had
to pack everything up and ship it to MacDill Air Force Base in Tampa, Florida,
for installation on the NOAA hurricane hunter. We removed a number of bugs
during these test flights, but not all. When we shipped the system, it still would
not track properly.

Once we were all installed on the hurricane hunter, we had a 6-hour test flight.
This permitted us to work out almost all of the bugs we had seen earlier and a
few new ones. We still had a few problems with the tracking code, which would
not track reliably.

Bonnie

Figure 14. Flight Track during Bonnie's Landfall

We flew two missions in hurricane Bonnie: the first on August 24 and the
second during landfall on August 26, 1998. During our first transit flight from
Tampa to the storm, we were able to isolate and correct the tracker bug and
everything started working better than expected. Soon after leaving the east
coast of Florida, our topographic display of the sea came alive for the first time,
showing real sea state. Ocean waves as high as 63 feet were observed in the
northeast quadrant of the hurricane on the 24th. Figure 14 shows our August
26 flight track during landfall overlaid on the aircraft weather radar image and a
contour plot of the wind field data. The base image includes the weather radar,
the wind field and the coastline and was provided by the Hurricane Research
Division (HRD) of the NOAA Atlantic Oceanographic and Meteorological
Laboratory (AOML) in Miami. We produced this overlay using Yorick.

In addition to hurricane Bonnie, we also flew in Earl and Georges.

https://secure2.linuxjournal.com/ljarchive/LJ/058/3212f14.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/058/3212f14.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/058/3212f14.jpg

Conclusion

Thanks to the reliability of Linux and all of the off-the-shelf real-time data
processing programs available in that domain, we were able to put together a
state-of-the-art data system on a very tight schedule with a great variety of real-
time displays. The displays proved to be of great value both in troubleshooting
during development and in real-time geophysical assessment and
interpretation during data acquisition. As a result, we were able to document
for the first time the spatial variation of the wave field in the vicinity of a
hurricane and the spatial and temporal variation of the storm surge associated
with hurricanes on landfall.

Resources

C. Wayne Wright (wright@osb.wff.nasa.gov) is a Data Systems Engineer for the
NASA Goddard Space Flight Center, Laboratory for Hydrospheric Processes,
Observational Sciences Branch, Wallops Island, VA. He is a 1984 graduate of the
University of Maryland with a degree in Computer Science. His interests include
aviation, amateur radio and computers. Away from work, he and his wife Vicki
operate a Linux web server.

Edward J. Walsh (walsh@osb.wff.nasa.gov) is a scientist for the NASA Goddard
Space Flight Center, Laboratory for Hydrospheric Processes, Observational
Sciences Branch, Wallops Island, VA. He received B.S. and Ph.D. degrees in
Electrical Engineering from Northeastern University in 1963 and 1967,
respectively. Ed is presently on assignment for NASA at the NOAA
Environmental Technology Laboratory in Boulder, Colorado.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

https://secure2.linuxjournal.com/ljarchive/LJ/058/3212s1.html
mailto:wright@osb.wff.nasa.gov
mailto:walsh@osb.wff.nasa.gov
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/058/toc058.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

University of Toronto WearComp Linux Project

Steve Mann

Issue #58, February 1999

Dr. Mann describes his WearComp (“Wearable Computer”) invention and how it
has evolved into the same kind of philosophical basis for self determination
and mastery over one's own destiny that is characteristic of the Linux operating
system that currently runs on WearComp.

This paper is part one of a two-part series. In this part I will describe a
framework for machine intelligence that arises from the existence of human
intelligence in the feedback loop of a computational process.

I will also describe the apparatus of the invention that realizes this form of
intelligence, beginning with a historical perspective outlining its visual and
photographic origins. The apparatus of this invention, called “WearComp”,
emphasizes self-determination and personal empowerment.

I also intend to present the material within a philosophical context I call
COSHER (Completely Open Source, Headers, Engineering and Research) that
also emphasizes self-determination and mastery over one's own destiny.

This “personal empowerment” aspect of my work is what I believe to be a
fundamental issue in operating systems such as Linux. It is this aspect that
WearComp and Linux have in common, and it is for this reason that Linux is the
selected operating system for WearComp.

An important goal of being COSHER is allowing anyone the option of acquiring,
and thus advancing, the world's knowledge base.

I will also introduce a construct called “Humanistic Intelligence” (HI). HI is
motivated by the philosophy of science, e.g., open peer review and the ability to
construct one's own experimental space. HI provides a new synergy between
humans and machines that seeks to involve the human rather than having
computers emulate human thought or replace humans. Particular goals of HI

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

are human involvement at the individual level and providing individuals with
tools to challenge society's preconceived notions of human-computer
relationships. An emphasis in this article is on computational frameworks
surrounding “visual intelligence” devices, such as video cameras interfaced to
computer systems.

Problem Statement

I begin with a statement of what I believe to be a fundamental problem we face
in today's society as it pertains to computers and, in particular, to computer
program source code and disclosure. Later, I will suggest what I believe to be
solutions to this problem. Linux is one solution, together with an outlook based
on science and on self-determination and individual empowerment at the
personal level.

A first, fundamental problem is that of software hegemony, seamlessness of
thought and the building of computer science upon a foundation of secrecy.
Advanced computer systems is an area where a single individual can make a
tremendous contribution to the advancement of human knowledge, but is
often prevented from doing so by various forms of software fascism. A system
that excludes any individual from exploring it fully may prevent that individual
from “thinking outside the box” (especially when the box is “welded shut”). Such
software hegemonies can prevent some individuals from participating in the
culture of computer science and the advancement of the state of the art.

A second fundamental problem pertains to some of the new directions in
human-computer interaction (HCI). These new directions are characterized by
computers everywhere, constantly monitoring our activities and responding
intelligently. This is the ubiquitous surveillance paradigm in which keyboards
and mice are replaced by cameras and microphones watching us at all times.
Perpetrators of this environmental intelligence claim we are being watched for
our benefit and that they are making the world a better place for us.

Computers everywhere constantly monitoring our activities and responding
intelligently have the potential to make matters worse from the software
hegemony perspective, because of the possibility of excluding the individual
user from knowledge not only of certain aspects of the computer upon his or
her desk, but also of the principle of operation and the function of everyday
things. Moreover, the implications of secrecy within the context of these
intelligence-gathering functions puts forth a serious threat to personal privacy,
solitude and freedom.

Figure 1. Evolution of the WearComp Invention

https://secure2.linuxjournal.com/ljarchive/LJ/058/3229f6.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/058/3229f6.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/058/3229f6.jpg

Computer Science or Computer Secrecy

Science provides us with ever-changing schools of thought, opinions, ideas and
the like, while building upon a foundation of verifiable (and sometimes
evolving) truth. The foundations, laws and theories of science, although true by
assumption, may at any time be called into question as new experimental
results unfold. Thus, when doing an experiment, we may begin by making
certain assumptions; at any time, these assumptions may be verified.

In particular, a scientific experiment is a form of investigation that leads
wherever the evidence may take us. In many cases, the evidence takes us back
to questioning the very assumptions and foundations we had previously taken
as truth. In some cases, instead of making a new discovery along the lines
anticipated by previous scientists, we learn that another previous discovery was
false or inaccurate. Sometimes these are the biggest and most important
discoveries—things that are found out by accident.

Any scientific system that tries to anticipate “what 99% of the users of our result
will need” may be constructing a thought prison for the other 1% of users who
are the very people most likely to advance human knowledge. In many ways,
the entire user base is in this thought prison, but many would never know it
since their own explorations do not take them to the outermost walls of this
thought prison.

Thus, a situation in which one or more of the foundation elements are held in
secret is contrary to the principles of science. Although many results in science
are treated as a “black box”, for operational simplicity there is always the
possibility that the evidence may want to lead us inside that box.

Imagine, for example, conducting an experiment on a chemical reaction
between a proprietary solution “A”, mixed with a secret powder “B”, brought to
a temperature of 212 degrees T. (Top-secret temperature scale which you are
not allowed to convert to other units.) It is hard to imagine where one might
publish results of such an experiment, except perhaps in the Journal of Non-
Reproducible Results.

Now, it is quite likely that one could make some new discoveries about the
chemical reaction between A and B without knowing what A and B are. One
might even be able to complete a doctoral dissertation and obtain a Ph.D. for
the study of the reaction between A and B (assuming large enough quantities of
A and B were available).

Results in computer science that are based, in part, on undisclosed matters
inhibit the ability of the scientist to follow the evidence wherever it may lead.
Even in a situation where the evidence does not lead inside one of the secret

“black boxes”, science conducted in this manner is irresponsible in the sense
that another scientist in the future may wish to build upon the result and may,
in fact, conduct an experiment that leads backwards as well as forwards.
Should the new scientist follow evidence that leads backwards, inside one of
these secret black boxes, then the first scientist will have created a foundation
contaminated by secrecy. In the interest of academic integrity, better science
would result if all the foundations upon which it was built were subject to full
examination by any scientist who might, at some time in the future, wish to
build upon a given discovery.

Thus, although many computer scientists may work at a high level, there would
be great merit in a computational foundation open to examination by others,
even if the particular scientist using the computational foundation does not
wish to examine it. For example, the designer of a high-level numerical
algorithm who uses a computer with a fully disclosed operating system (such as
Linux) does other scientists a great service, even if he uses it only at the API
level and never intends to look at its source code or that of the Linux operating
system underneath it.

Figure 2. ECE1766 Class Picture

Obvious or Obfuscated

Imagine a clock designed so that when the cover was lifted off, all the gears
would fly out in different directions, such that a young child could not open up
his or her parents' clock and determine how it works. Devices made in this
manner would not be good for society, in particular for the growth and
development of young engineers and scientists with a natural curiosity about
the world around them.

As the boundary between software and hardware blurs, devices are becoming
more and more difficult to understand. This difficulty arises in part as a result
of deliberate obfuscation by product manufacturers. More and more devices
contain general-purpose microprocessors, so that their function depends on
software. Specificity of function is achieved through specificity of software
rather than specificity of physical form. By manufacturing everyday devices in
which only executable code is provided, manufacturers have provided a first
level of obfuscation. Furthermore, additional obfuscation tools are often used
in order to make the executable task image more difficult to understand. These
tools include strippers that remove things such as object link names and even
tools for building encrypted executables which contain a dynamic decryption
function that generates a narrow sliding window of unencrypted executable, so
that only a small fragment of the executable is decrypted at any given time. In
this way, not only is the end user deprived of source code, but the executable

https://secure2.linuxjournal.com/ljarchive/LJ/058/3229f3.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/058/3229f3.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/058/3229f3.jpg

code itself is encrypted, making it difficult or impossible to look at the code
even at the machine-code level.

Moreover, complex programmable logic devices (CPLDs), such as the Alterra
7000 series, often have provisions to permanently destroy the data and
address lines leading into a device, so that a single chip device can operate as a
finite-state machine yet conceal even its machine-level contents from
examination. (See Resources 1 for an excellent tutorial on FPGAs and CPLDs.)
Devices such as Clipper chips go a step further by incorporating fluorine atoms,
so that if the user attempts to put the device into a milling machine to mill it off
layer by layer for examination under an electron microscope, the device will
self-destruct in a quite drastic manner. Thus, the Clipper phones could contain
a “Trojan horse” or some other kind of back door and we might never be able
to determine whether or not this is the case—yet another example of
deliberate obfuscation of the operational principles of everyday things.

We have a growing number of general-purpose devices in which the function or
purpose depends on software, downloaded code or microcode. Because this
code is intellectually encrypted, so is the purpose and function of the device. In
this way, manufacturers may provide us with a stated function or purpose, but
the actual function or purpose may differ or include extra features of which we
are not aware.

Environmental Intelligence Gathering Systems

A number of researchers have been proposing new computer user interfaces
based on environmental sensors. Buxton, who did much of the early pioneering
research into intelligent environments (smart rooms, etc.), was inspired by
automatic flush urinals (as described, for example, in U.S. Pat. 4309781,
5170514, etc.) and formulated, designed and built a human-computer
interaction system called the “Reactive Room” (see Resources 2 and 3). This
system consisted of various sensors, including optical sensors (such as video
cameras) and processing, so that the room would respond to the user's
movement and activity.

Increasingly, we are witnessing the emergence of intelligent highways, smart
rooms, smart floors, smart ceilings, smart toilets, smart elevators, smart light
switches, etc. However, a typical attribute of these “smart spaces” is that they
were designed by someone other than the occupant. Thus, the end user of the
space often does not have a full disclosure of the operational characteristics of
the sensory apparatus and the flow of intelligence data from the sensory
apparatus.

In addition to the intellectual encryption described in the previous section,
where manufacturers could make it difficult, or perhaps impossible, for the end

user to disassemble such sensory units in order to determine their actual
function. There is also the growth of hidden intelligence, in which the user may
not even be aware of the sensory apparatus. For example, U.S. Pat. 4309781
(for a urinal flushing device) describes:

... sensor... hidden from view and thus discourage
tampering with the sensor... when the body moves
away from the viewing area... located such that an
adult user of average height will not see it... sensing
means, will be behind other components... positioned
below the solenoid to allow light in and out. But the
solenoid acts in the nature of a hood or canopy to
shield the sensing means from the normal line of sight
of most users.... Thus most users will not be aware of
the sensing means. This will aid in discouraging
tampering with the sensing means. A possible
alternate arrangement would be to place the sensing
means below and behind the inlet pipe.

U.S. Pat. 4998673 describes a viewing window concealed inside the nozzle of a
shower head, where a fiber optics system is disclosed as a means of making the
sensor remote. The concealment is to prevent users from being aware of its
presence. U.S. Pat. 5199639 describes a more advanced system where the
beam pattern of the nozzle is adapted to one or more characteristics of the
user, while U.S. Pat. 3576277 discloses a similar system based on an array of
sensing elements.

A method of creating viewing windows to observe the occupants of a space
while at the same time making it difficult for the occupants to know if and when
they are observed is proposed in U.S. Pat. 4225881 and U.S. Pat. 5726706.

In addition to concealing the sensory apparatus, a goal of many visual
observation systems is to serve the needs of the system architect rather than
the occupants. For example, U.S. Pat. 5202666 discloses a system for
monitoring employees within a restroom environment, in order to enforce
hygiene (washing of hands after using the toilet).

Other forms of intelligence, such as intelligent highways, often have additional
unfortunate uses beyond those purported by the installers of the systems. For
example, traffic-monitoring cameras were used to round up, detain and
execute peaceful protesters in China's Tiananmen Square.

U.S. Pat. 4614968 discloses a system where a video camera is used to detect
smoke by virtue of the fact that smoke reduces the contrast of a fixed pattern
opposite the video camera. However, the patent notes that the camera can also
be used for other functions such as visual surveillance of an area, since only
one segment or line of the camera is needed for smoke detection. Again, the

camera may thus be justified for one use; additional uses, not disclosed to
occupants of the space, may then evolve. U.S. Pat. 5061977 and 4924416
disclose the use of video cameras to monitor crowds and automatically control
lighting in response to the absorption of light by the crowds. While this form of
environmental intelligence is purportedly for the benefit of the occupants (to
provide them with improved lighting), there are obvious other uses.

U.S. Pat. 5387768 discloses the use of visual inspection of users in and around
an automated elevator. Again, these provide simple examples of environmental
intelligence in which there are other uses, such as security and surveillance.
Although even those other uses (security and surveillance) are purportedly for
the benefits of the occupants, and it is often even argued that concealing
operational aspects of the system from the occupants is also for their benefit, it
is an object of this paper to challenge these assumptions and provide an
alternate form of intelligence.

When the operational characteristics, function, data flow and even the very
existence of sensory apparatus is concealed from the end user, such as behind
the grille of a smoke detector, environmental intelligence does not necessarily
represent the best form of human-machine relationship for all concerned. Even
when the sensors are visible, there must be the constant question as to
whether or not the interests of the occupant are identical to those who control
the intelligence-gathering infrastructure.

The need for personal space, free from monitoring, has also been recognized
(see Resources 4) as essential to a healthy life. As more and more personal
space is stolen from us, we may need to be the architects of alternate spaces of
our own.

Solution to Software Fascism

The first solution to these problems is a framework called Completely Open
Source, Headers, Engineering, and Research (COSHER). Before investing
considerable time in learning how to use new software and in developing works
for that new software, which may then become locked into a particular file
format, we ask ourselves a very simple question: is the software in question
COSHER?

This means that there has been no deliberate attempt at obfuscation of the
underlying principles of the operation of this software or in preventing us from
freely distributing the intellectual foundations upon which we may invest many
years of our lives. Deliberate attempts at obfuscation include such practices as
eliminating source code and stripping executable task images.

By using COSHER software, we are making a statement that we prefer
Computer Science to Computer Secrecy. Science supports the basic principles
of peer review, a continued development and advancement of software
principles and principles that we build on top of the software.

Moreover, the time we invest in learning the software as well as creating works
in the software will be less likely to go to waste if we have a copy of the
complete source code of the software. In this manner, should the software ever
become discontinued or unsupported, we will be able to become our own
software support group and migrate the software forward to new architectures
as our old computers become obsolete. If it is COSHER, chances are we will be
less likely to lose the many hours or years we invest in producing works within
the software. Furthermore, if we make new discoveries that are built on a
foundation of COSHER software, they are easier to distribute.

In science, it is important that others be able to reproduce our results. Imagine
what it would be like if we had built our results on top of DOS 3.1. Others would
have to either rewrite our software to exactly reproduce our results, or find an
old version of DOS 3.1. Since this is proprietary software, we are not at liberty
to freely distribute it with our research, but it is also no longer available for
purchase. However, if we had built our work on COSHER software such as Linux
1.13, we can include a full distribution of Linux 1.13 in an archive together with
our results. Many years in the future, a scientist wishing to reproduce our
results could then obtain a virtual machine (emulator for our specific
architecture which will no doubt be obsolete by then) and install the COSHER
operating system (Linux 1.13) that came with our archive, then compile and run
our programs.

The Linux operating system is a good example of a COSHER operating system.
GNU software is also COSHER. Many COSHER software packages are available,
including GIMP (Gnu Image Manipulation Program) and the VideoOrbits
software package (described in http://wearcam.org/orbits/index.html).

Solution to Environmental Intelligence Gathering

I propose a computational framework for individual personal empowerment.
This framework is based on my “WearComp” invention—an apparatus for
(embodiment of) realization of HI.

This framework involves designing a new kind of personal space. An
embodiment of the “WearComp” invention is an apparatus that is owned,
operated and controlled by the occupant of that space. In one sense, the
apparatus of this invention is like a building built for one occupant and
collapsed down around that one occupant.

WearComp as a Basis for HI

I invented WearComp in Canada in the 1970s as a photographic tool for the
visual arts (see Resources 5), in particular, something I called “mediated reality”
(altered perception of visual reality). The goal of mediated reality, unlike related
concepts such as virtual (or augmented) reality, was to reconfigure (augment,
deliberately diminish or otherwise alter) the perception of reality in order to
attain a heightened awareness of how ordinary, everyday objects respond to
light.

HI is a new form of human-computer interaction comprising a computer that is
subsumed into the personal space of the user (e.g., the computer may be worn,
hence the term “user” and “wearer” of the computer are interchangeable),
controlled by the wearer, with both operational and interactional constancy
(e.g., it is always on and always ready and accessible [see Resources 6]).

The WearComp invention, described in IEEE Computer, Vol. 30, No. 2 at http://
wearcomp.org/ieeecomputer.htm (a historical account was given in IEEE
ISWC-97, October 1997 and is also on-line at http://wearcomp.org/historical/
index.html) forms the basis for HI. The evolution of the apparatus of this
invention is depicted in Figure 1.

Definition of WearComp

A wearable computer is a computer that is subsumed into the personal space
of the user, controlled by the user and has both operational and interactional
constancy.

Most notably, it is a device that is always with the user and into which the user
can always enter commands and execute a set of entered commands while
walking around or doing other activities.

The most salient aspect of computers in general (whether wearable or not) is
their reconfigurability and their generality, e.g., their function can be made to

vary widely, depending on the instructions provided for program execution.
This is true for the wearable computer (WearComp). For example, the wearable
computer is more than just a wristwatch or regular eyeglasses; it has the full
functionality of a computer system and, in addition, is inextricably intertwined
with the wearer.

This is what sets the wearable computer apart from other wearable devices
such as wristwatches, regular eyeglasses, wearable radios, etc. Unlike these
other wearable devices that are not programmable (reconfigurable), the
wearable computer is as reconfigurable as the familiar desktop or mainframe
computer.

The formal definition of wearable computing defined in terms of its three basic
modes of operation and its six fundamental attributes is provided elsewhere in
the literature. (See Resources 7.)

WearComp, as Universal Interface to Reality

Such a computational framework allows one to subsume all of the personal
electronics devices one might normally carry, such as cellular phone, pager,
wrist watch, heart monitor, camera and video camera into a single device.
Obviously, since it is a fully featured computer, it is possible to respond to e-
mail, plan events on a calendar, type a report, etc., while walking, standing in
line at the bank or anywhere. In this way, WearComp anticipated the later
arrival of the so-called “laptop computer”, but has advantages over the laptop
in the sense that it can be used while walking around doing other things.
However, the real power of WearComp is in its ability to serve as a basis for
personal imaging and humanistic intelligence.

Figure 3. Another Example of WearComp

Personal Safety Device

WearComp not only subsumes the function of the laptop computer, but goes
beyond it. Another area in which WearComp provides a truly new form of user
interface not found on laptops and PDAs (personal digital assistants) is in its
constancy of user interface and operation. This characteristic may become
most evident in its use as a personal security camera. Imagine, perhaps as you
walk down some quiet street at night, an assailant appears, demanding cash
from you. You would not likely have the time or opportunity to pull out a
camcorder to record the experience, but since the eyeglasses are worn
constantly, you would have a video record of the experience to aid
investigation.

https://secure2.linuxjournal.com/ljarchive/LJ/058/3229f4.jpg

Camera of the Future

Less extreme examples of WearComp as a new user-interface include the
ability to construct a personal documentary video without conscious thought or
effort. For example, in a fully mediated reality, all light entering the eyes, in
effect, passes through the computer and may therefore be recorded (and
possibly transmitted to remote locations). Wearable Wireless Webcam (see
Resources 8) is an example of a personal documentary video recorded using a
reality mediator.

In the future, we may very well have the capability to capture and recall our
own personal experiences and to have photo albums generated automatically
for us. We will never miss baby's first steps, because we will have a retroactive
record feature that lets us, for example, “begin recording from 5 minutes ago”.
Photo albums, in addition to being generated automatically, may also be
exhibited while they are being generated. Rather than sending postcards to
friends and relatives or showing them an album after you come back from
vacation, you may just put on your sunglasses and have the album sent to
them automatically, as was done with the Wearable Wireless Webcam
experiment in which video was transmitted and still images automatically
selected from the video.

Personal Intelligence Arms Race

While there will no doubt be more environmental intelligence than personal
intelligence, there is at least the hope that there might be an end to the drastic
imbalance between the two. The individual making a purchase in a department
store may have several cameras pointing at him to make sure that if he
removed merchandise without payment, there would be evidence of the theft.
However, in the future, he will have a means of collecting evidence that he did
pay for the item, or a recorded statement from a clerk about the refund policy.
More extreme examples such as the case of Latasha Harlins, a customer falsely
accused of shoplifting and fatally shot in the back by a shopkeeper as she
attempted to walk out of the shop, come to mind.

In this sense, the camera-based reality mediator becomes an equalizer much
like the Colt 45 in the “Wild West”. In the WearCam case, it is simply a matter of
mutually assured accountability.

Future Directions

Much work remains to be done in development of this project. Currently, I
teach Electrical and Computer Engineering (ECE1766) at the University of
Toronto. To the best of my knowledge, this is the world's first course on how to
be a “cyborg” entity. Students learn not only by doing, but by being. I call this

form of learning existential learning. Each student creates a “reconfigured
self”--a new form of personal space. Thus, students learn about the concept of
personal empowerment from a first-person perspective through personal
involvement.

We are writing new protocols for the altered perception of reality (mediated
reality) that the WearComp provides. One example is picture-transfer protocol
(PTP), in which packets of variable length are transmitted. Each packet is a JPEG
compressed picture. Because of image compression, the amount of data varies
depending on image content, hence the packet length depends on image
content.

The reason for one packet per picture is that pictures are taken 60 times per
second, which is much faster than they can be sent. Thus, whenever there is a
lost packet and a re-transmission is needed, a newer picture will most likely be
available to be sent instead. With PTP, retransmissions are always current.

Next month I will describe a mathematical (computational) framework called
“Mediated Reality”, in which we will see that picture data is of greatest value
only if it is up-to-date. Old pictures are of less value when trying to construct a
computer-mediated reality. Thus, packet resends should always be of the most
current image; hence the design of PTP is based on variable packet lengths, in
which the packet length is the length of a picture.

Further information about the WearComp Linux project may be found in http://
wearcam.org/ece1766.html.

Resources

Thanks to Kodak and Digital Equipment Corporation (DEC) for assistance with
the Personal Imaging and Humanistic Intelligence projects.

Steve Mann, inventor of WearComp (wearable computer) and WearCam (eye-
tap camera and reality mediator), is a faculty member at the University of
Toronto, Department of Electrical and Computer Engineering. Dr. Mann has
been working on his WearComp invention for more than 20 years, dating back

https://secure2.linuxjournal.com/ljarchive/LJ/058/3229s1.html

to his high school days in the 1970s. He brought his inventions and ideas to the
Massachusetts Institute of Technology in 1991, founding what later became the
MIT Wearable Computing Project, and received his Ph.D. from MIT in 1997 in
this new field he had established. Anyone interested in joining or helping out
with the “community of cyborgs” project or the WearComp Linux project may
contact the author by e-mail at mann@eecg.toronto.edu.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/058/toc058.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

Virtual Network Computing

Brian Harvey

Issue #58, February 1999

Mr. Harvey tells us about the VNC software package and how to set it up to
control MS Windows servers from Linux.

In today's changing world, an increasing number of UNIX system administrators
are finding they need to support Windows NT servers in their work
environments. Whether Exchange or application servers, NT servers are
starting to creep into what were once UNIX-only shops. The responsibility of
managing an NT server can be discouraging to any UNIX guru. UNIX users are
used to the flexibility of the X Window System—the ability to run applications
easily on any UNIX server and have remote X applications display on the local
desktop. It is much more difficult to manage NT servers remotely and the
administrator usually needs to be at the system's console to run most NT
applications.

Several commercial products allow MS Windows applications to be controlled
remotely from an X desktop. In addition, there are several commercial X servers
for MS Windows which allow the opposite. However, until recently an
equivalent free software package was not available.

VNC

Researchers at the Olivetti & Oracle Research Laboratory (ORL) have released
the VNC software package under the GNU general public license. VNC, which
stands for Virtual Network Computing, is a client/server-based, stateless,
platform-independent protocol developed at ORL. This protocol implements a
remote display system in which a user is allowed to control a computing

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

“desktop” managed by a VNC server, by connecting to it from a VNC client
application called a “viewer”. VNC servers currently exist for Windows 95/NT,
Macintosh and UNIX. A variety of VNC clients exist as well for a number of
operating systems. Figure 1 shows all the connections currently possible with
the VNC protocol. Many of the VNC viewers are ported by users on the Net. ORL
supplies precompiled server and client binaries for Windows 95/NT, Macintosh,
Linux, Digital UNIX and Solaris. In addition, ORL provides a Windows CE client.

Figure 1. VNC Protocol Connections

In this article, I will discuss how to set up the VNC software, allowing you to
control a Windows desktop from Linux running the X Window System (probably
the most common use of VNC for Linux users).

Installation

Linux (VNC Viewer)

ORL provides an x86 Linux 2.0 binary that works great with Red Hat 5.1 and can
be retrieved from their download page (see Resources). Once you have the
package, unarchive it using gunzip and tar. The binary distribution provides no
installation script, but for our purposes we simply need to have root copy the
viewer binary, vncviewer, into a suitable location accessible by others, such as /
usr/local/bin.

Windows 95/NT (VNC Server)

ORL provides a precompiled Windows 95/NT binary supplied as a package that
can also be downloaded from their download page. The package installs like
most other Windows software packages, i.e., using InstallShield. The VNC server
(WinVNC) can be installed as a regular application (started/stopped by the user
currently logged on to the console) or as an NT service (starts automatically
when NT boots; does not exit when user logs out). Installation as a service is a
new feature in recent versions of WinVNC. The latest version at the time of
writing, is 3.3.2R5. VNC is actively developed, so a newer version of the software
will most likely be ready to download by the time you read this. I recommend
installing WinVNC as a service so that the VNC server is always running and you
do not have to remain logged in on the Windows console at all times.

To install WinVNC as a service, simply install the package as you would normally
install any other Windows application, then type in a command window:

cd
WinVNC.exe -install
WinVNC.exe -run # or reboot NT to have the<\n>
 # service start automatically

https://secure2.linuxjournal.com/ljarchive/LJ/058/2969f2.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/058/2969f2.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/058/2969f2.jpg

Configuration

The Linux VNC viewer requires no configuration to use. However, the Windows
VNC server does require some minor configuration. To bring up the
configuration window, either right-click on the WinVNC icon in the Windows NT/
95 system tray and select Properties, or open a DOS command window and
type:

cd
WinVNC.exe -settings

Figure 2. Windows VNC Configuration Window

In the configuration window, shown in Figure 2, the following options can be
set:

• Make sure Accept Socket Connections is selected. If this option is not
checked, all incoming connections will be disabled.

• The Display Number can be left at 0. This value is specified when using a
VNC viewer to connect to this server.

• Set a Password to secure access to this VNC desktop (a good idea). When
connecting to this VNC server via a viewer, you will be prompted for the
same password.

• If Disable Remote Keyboard & Pointer is selected, all incoming viewer
connections will be able to see the desktop but will not be able to move
the mouse or type anything (a read-only connection).

• In the Update Handling section, various options can be turned on/off to
control how the VNC server sends “desktop changes” to a VNC viewer. See
http://www.orl.co.uk/vnc/winvnc.html for in-depth explanations on the
pros and cons of each option.

Press the Ok or Apply button to apply your configuration changes.

Using the Linux VNC viewer

Once you have WinVNC running on a Windows server, try connecting to it from
your Linux desktop by typing (within X) the following command, followed by the
password you gave when configuring WinVNC (if any):

> vncviewer
vncviewer: VNC server supports protocol version 3.3 (viewer 3.3)
Password:
vncviewer: VNC authentication succeeded
vncviewer: Desktop name "boxster"
vncviewer: Connected to VNC server, using protocol version 3.3
vncviewer: VNC server default format:
16 bits per pixel.
Least significant byte first in each pixel.
True color: max red 31 green 63 blue 31
 shift red 11 green 5 blue 0

https://secure2.linuxjournal.com/ljarchive/LJ/058/2969f3.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/058/2969f3.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/058/2969f3.jpg

Using default colormap and translating to BGR233
Creating window depth 8, visualid 0x22 colormap 0x21

If you typed the password correctly, several lines of information will appear and
a new large window will pop up showing the entire remote Windows desktop.
When you are finished using the VNC viewer, simply close the viewer's window
to close the connection. The remote Windows desktop will be left in the last
state the viewer left it in.

Figure 3 shows a sample Linux desktop with a newly opened VNC viewer
connection “viewing” a Windows NT desktop.

Figure 3. Linux Desktop Viewing Windows NT

A nice feature available in recent VNC releases is the ability to send the
infamous ctrl-alt-del key sequence to the Windows desktop shown in a VNC
viewer. This feature has distinct advantages when the VNC server is installed as
a service:

• If the VNC server is installed as a service under Windows NT, you don't
need to have a user logged on all the time with the VNC server running as
a Windows application. When it comes time to use that server remotely,
simply connect to it with a VNC viewer, press ctrl-alt-del to get the NT login
Window, and log on as you normally would to the NT box.

• If you need to stay logged on to the NT server but want to exit your local X
session, you can type ctrl-alt-del to get the “Windows NT Security” pop-up
window, click on “Lock Workstation” to lock the console, close the VNC
viewer connection, then exit your X session. You will still remain logged on
to the NT server; its screen is now locked.

Advantages

The VNC protocol has several advantages. The main one is that it is stateless. A
user can close a connection to a remote desktop from one VNC viewer and
later reconnect to that same remote desktop from the same or different VNC
viewer, and it will be in the same state.

When using the Java VNC viewer, a system administrator can control a Windows
95/NT, Macintosh, or UNIX desktop from anywhere in the world using a Java-
enabled browser. The VNC server can be configured so that all incoming viewer
connections will be able to see the desktop but will not be able to move the
mouse or type anything (a read-only connection). This option comes in handy in
a teaching environment, where each student in a class connects to the
instructor's “desktop” and watches a demonstration on his own computer
rather than on an overhead connected to the instructor's computer.

https://secure2.linuxjournal.com/ljarchive/LJ/058/2969f4.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/058/2969f4.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/058/2969f4.jpg

How I Use VNC

At work, I have an Alpha running Digital UNIX and a P133 running Windows NT
4.0. Although I am strictly a UNIX systems administrator, my company's e-mail
standard is based on Microsoft Exchange. Therefore, I am required to have a
Windows desktop on my desk in order to read Exchange e-mail. However, at
home I run only Linux. I was looking for a way to read my Exchange e-mail from
home. After reading about VNC, I knew I had found what I was looking for.

I use the Linux VNC viewer at home to connect to the Windows NT box on my
desk at work over a PPP connection. Figure 4 shows me reading my Exchange
e-mail with such a setup. While VNC performance over a PPP line isn't
spectacular, it is very usable and solves my problem of not being able to read
Exchange e-mail from home.

Figure 4. Reading MS Exchange from Linux

Resources

Brian Harvey is currently a UNIX Systems Administrator for U.S. Technical
Services in Huntington Beach, CA. He is a graduate of UC Riverside with a BS
and MS in Computer Science. He can be reached via email at
brian.harvey@ustsvs.com

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

https://secure2.linuxjournal.com/ljarchive/LJ/058/2969f5.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/058/2969f5.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/058/2969f5.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/058/2969s1.html
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/058/toc058.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

Configuring ATM Networks

Wayne J. Salamon

Issue #58, February 1999

This article describes how to configure Linux-based PCs and an asynchronous
transfer mode (ATM) switch to build on ATM network.

The Linux ATM software (device driver and utilities) is developed and supported
by Werner Almsberger in Switzerland as part of the Linux-ATM API software set
(see Resources). This software contains device drivers for the following ATM
adapters: Efficient ENI-155P, SMC ATM Power 155, Rolf Fiedler's TNETA1570
board, Zeitnet ZN1221/ZN1225 and the IDT 77901/77903 155 and 25 Mbps
adapters. Also, a driver for the Fore PCA-200E ATM adapter is available
separately (see Resources). The two adapters I have experience with are the
Efficient ENI-155p and the Fore PCA-200E.

The National Institute of Standards and Technology (NIST) uses ATM and Fast-
Ethernet networks as interconnects in its scalable cluster computing initiative.
One research area is evaluating the benefits of ATM and Fast-Ethernet
networks in this cluster environment.

In this article, I will tell you how to obtain and install the ATM support software
and device drivers. I will also describe how to configure the ATM connections
on the PCs and the switch to be used for IP network traffic.

The ATM interface cards I use are ENI-155P ATM adapters produced by Efficient
Networks and PCA-200EPC adapters from Fore Systems. These cards are
installed in standard Pentium or Pentium-Pro-based PCs running Linux. The
ATM switch I used for this article is a Fore ASX-1000, although the information I
give applies to all of the Fore ATM switches. This switch can be set up to allow
the Linux workstations to use IP over both Switched Virtual Circuits (SVC) and
Permanent Virtual Circuits (PVC).

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

Obtaining and Installing the Linux-ATM Software

The ATM software is available from http://lrcwww.epfl.ch/linux-atm/. The
software is packaged as a compressed, gzipped tar file. Each version of the
software is tied to a specific version of the Linux kernel. For this article, I used
version 0.35 running on Linux kernel 2.1.90. The size of the ATM software
distribution is roughly 500KB. The device driver for the Fore PCA-200E adapter
can be obtained by anonymous FTP from ftp://os.inf.tu-dresden.de/pub/
pca200e/. Refer to the README file in the PCA200 distribution for further
information.

The driver portion of the Linux-ATM software, as well as the changes to the
Linux kernel, are shipped as one large patch file. Therefore, adding support to
the Linux kernel for ATM is straightforward: apply the kernel patch, configure
and rebuild the kernel in the usual way. The ATM configuration items you must
have are:

• Asynchronous Transfer Mode (ATM) (CONFIG_ATM)
• Classical IP over ATM with ATMARP (CONFIG_ATM_ATMARP)
• Device driver, one of the following:Efficient Networks ENI155P

(CONFIG_ATM_ENI)ZeitNet ZN1221/ZN1225 (CONFIG_ATM_ZATM)Rolfs TI
TNETA1570 (CONFIG_ATM_TNETA1570)IDT 77201 (NICSTAR)
(CONFIG_ATM_NICSTAR)

I recommend starting with a fresh Linux kernel source tree before applying the
ATM patch. Refer to the USAGE file that is part of the Linux-ATM software, as
things may change. All of the device drivers in the distribution can be built as
kernel modules or as part of the kernel object itself. If you are using a Fore
PCA-200E adapter, you do not select a driver during the kernel configuration.
The PCA-200E device driver is built as a module separately, as specified in the
README file included in the PCA200 distribution.

After the kernel is patched, rebuilt and installed, you are ready to build the ATM
support software. Again, refer to the instructions in the USAGE file. One change
I recommend is installing the support files in /usr/local/atm-version/bin and
creating a soft link from /usr/local/atm to the actual install directory. By using
the soft link, you can change ATM software levels and back them out, if needed,
without changing the configuration scripts.

Configuring the ATM Device Interface

You are now ready to configure the IP over ATM. First, you must decide what
type of “virtual circuits” to use to connect the machines. ATM is a point-to-point,
switched technology; in order for two hosts to communicate, a virtual circuit
must be established between them.

Switched Virtual Circuits (SVCs) are connections that are established
dynamically and torn down when the connection is no longer needed.
However, a high latency is associated with establishing a connection. Also, SVCs
are deleted after a timeout period if no traffic is sent over the connection.
Therefore, the latency associated with SVCs is not always predictable. I
encountered several problems when using SVCs, such as connections not being
established or sometimes failing to remain open.

Permanent Virtual Circuits (PVCs) are established and kept open. Thus, no
latency is associated with establishing the connection, as there is when using
SVCs. The disadvantage of PVCs is that the switch must be configured to
establish all the connections between the hosts. When you have several hosts
and each host needs to communicate with all the others, the number of PVCs
required within the ATM switch grows rapidly. Specific configuration
information for SVCs and PVCs is discussed later, but I will jump ahead a bit in
order to complete the IP configuration now. The steps to configure the ATM
interface are as follows:

• Start the ATM software daemons with these commands:
 atmsigd -b
 ilmid -b
 atmarpd -b

• Create the ATM device name:
 atmarp -c atm0

• Configure the ATM interface for IP:
 ifconfig atm0 ipaddr netmask netmask mtu mtu

• Add the route for the ATM subnet:
 route add -net network netmask netmask atm0

• Create a permanent ATM ARP (address resolution protocol) cache entry
for the ARP server:

 atmarp -s arpserver arpsrvnsap arpsrv

ipaddr is the IP address of the ATM interface, netmask is the network mask and
network is the IP address of the network to which we are connecting. arpserver

is the IP address of the ATM ARP server and arpsrvnsap is the ATM address of
the ARP server. The ATM ARP server is used to convert an IP address to an ATM
network service access point (NSAP) address. (The NSAP address is similar to a
media access control (MAC) address and is 20 octets long.) The NSAP address is
needed to establish SVCs between nodes. You can also create an /etc/hosts.atm
file to contain the IP to NSAP mapping, allowing for quicker IP to NSAP
translations. For my network, I use the Fore switch as the ARP server. The
atmarpd daemon maintains a cache of IP to NSAP mappings. The atmarp

command makes the ARP cache entry permanent when the arpsrv option is
used.

One final note: if you are going to use PVCs only, you do not need to start the
atmsigd and ilmid daemons. Listing 1 contains a complete example of
configuration commands.

Configuration of Switched Virtual Circuits

The ATM switch configuration commands I use apply to the entire family of
Fore ATM switches, because they all have a similar command interface.

When using SVCs, a host must pass information to the ATM switch, declaring its
intent to set up a connection with another host. The term for connection setup
is “signaling”. The ATM protocol used between a host and a switch is the user-
network-interface (UNI) signaling standard. There are several revisions of the
UNI standard. The Fore ATM switch supports UNI 3.0, 3.1 and 4.0. The Linux-
ATM software also supports these versions.

However, there are standards and there are implementations. In setting up our
SVCs, I encountered several problems with UNI 3.0 signaling. The UNI 3.1
signaling was more stable and reliable. To change the signaling on the Fore
ATM switch, each port must be changed individually, using the switch control
processor (SCP) command interface.

First, log on to the SCP via a TELNET session or by using a terminal attached to
the serial port on the Fore switch. The command syntax used here is the same
as Fore's. Required parameters are shown between “<” and “>”; options are
enclosed in brackets (“[” and “]”); modifiers to options are enclosed in
parentheses. One of the modifiers must be chosen.

Change to the UNI configuration menu:

localhost::> conf uni

The switch prompt is shown in italics, while the command is shown in normal
text.

The command show will list the current UNI status for each port. If the port is
already configured for UNI 3.1, no change needs to be made. Otherwise, you
must first delete the current configuration. The syntax for the delete command
is del port vpi, where port is the switch port and vpi is the virtual path
identifier (usually 0). To delete the signaling on port 1A1 for VPI 0, you would
enter this command:

localhost::configuration uni> del 1a1 0

Now you are ready to configure the port for UNI 3.1. The syntax for the new
command is:

https://secure2.linuxjournal.com/ljarchive/LJ/058/3005l1.html

new <port><vpi> [auto | uni30 | uni31] [-ilmi (up | down)]

The ilmi option is used when you want the port to respond to integrated local
management interface (ILMI) requests. ILMI is used by the hosts to obtain the
ATM NSAP address assigned to the host. You usually want to have ILMI active
for the port, so the command for port 1A1, VPI 0 is:

localhost::configuration uni> new 1a1 0 uni31 -ilmi up

Now that the ATM switch ports have been configured, the software on the
workstation must be set up. The key portions of the Linux-ATM software are
three daemons: atmsigd to handle signaling (UNI), ilmid to handle ATM address
registration and atmarpd to map ATM addresses to IP addresses. Listing 1 is
the startup script I use to start the ATM daemons and to configure the ATM
interface on a host. This script can be called from a system startup script (/etc/
rc.d/rc.local, for example) to configure the ATM interface at boot time.

The ATM signaling daemon, atmsigd, must be compiled specifically for the
version of signaling you wish to use and must be compatible with the signaling
version the ATM switch port has been configured to use. The default version
used in the ATM software is UNI 3.0. If you've configured the switch to use UNI
3.1, having the hosts use UNI 3.0 will most likely work, due to backward
compatibility. However, I recommend you configure the Linux-ATM software to
use the same version as the switch, UNI 3.1.

To have the signaling daemon use UNI 3.1, edit the Rules.make file in the ATM
source directory (/usr/src/atm if you follow the steps in the USAGE file). You
need to change the STANDARDS line to specify the version of signaling to
support. For UNI 3.1, this line should be: STANDARDS=-DUNI31.

Special Configuration for ENI-155p ATM Cards

If you are using Efficient ENI-155p ATM cards, the number of simultaneous
virtual channels available is limited. The ENI card performs the segmentation
and reassembly (SAR) of ATM cells by using memory on the adapter card as a
buffer. The host ATM software allocates buffer space for each virtual channel. If
you attempt to open more SVCs than are supported by the available buffer
space, you will receive this error message from the ATM ARP daemon:

atmarpd:IO: [2]connect: No buffer space available

When IP over ATM is used, the device driver sends packets to the ATM card
using an ATM Adaptation Layer (AAL). While several adaptation layers are
available, AAL-5 is used for IP. The AAL-5 packet is a type of service data unit
(SDU) and is somewhat analogous to an Ethernet frame. The AAL-5 packets are
divided into individual ATM cells by the Efficient ATM adapter.

The MTU (maximum transmission unit) size for the ATM interface depends on
the SDU size. The IP over ATM (Classical IP) specification says that the MTU
should be no larger than 9180 bytes. There are also 8 bytes for an AAL-5 trailer,
so the SDU for IP over ATM is 9188 bytes in the default configuration. The
amount of buffer space needed on the card depends on the maximum SDU
size.

The Linux-ATM software allocates three times the maximum SDU size, rounded
up to the nearest power of two. In the default configuration, this allocation
results in 32KB of buffer space being reserved for each ATM connection (9180 x
3 = 27540, rounded to 32768 bytes). Also, using classical IP causes two SVCs to
be made: the initiating machine opens an active connection to the target
machine and the target machine opens an active connection back, that is, a
passive connection on the initiator. Therefore, these two connections result in
the allocation of two buffers on the ATM card, for a total of 64KB.

The default configuration allows a host to have a maximum of fourteen
simultaneous connections when using the “client” version of the ENI-155p ATM
card, which has 512KB of memory and 504KB of memory available for the SAR
buffers. These fourteen connections allow communication using IP over ATM to
seven other hosts when using SVCs. If you set up PVCs, you can communicate
with fourteen other hosts. When using an ARP server, you have one less
connection available, reducing the host count by one as well. The “server”
version of the ENI 155p card has 2MB of memory, with 2040KB for SAR buffers,
allowing for more simultaneous connections.

To increase the number of simultaneous connections for classical IP, you need
to change the size of the maximum SDU set on the ATM interface. By using the
allocation rule given above, you can estimate the amount of memory needed
for the connections. For example, if you want to use 16KB for each connection,
the maximum SDU would be 16384 divided by 3, which is 5461 bytes. I'll use an
SDU of 4352 bytes for my example in this article.

The maximum SDU is specified as an option to the ATM ARP daemon. However,
when the SDU is changed, the IP interface must also be configured to have an
MTU of the same size as the SDU, minus 8 bytes for the AAL-5 trailer. Therefore,
in my example the MTU is 4344 bytes.

A potential problem occurs when changing the maximum SDU for the interface:
the ATM ARP daemon (atmarpd) may not communicate with the ARP server on
the Fore switch. Our switch would accept only connections with an SDU of 9188
bytes. The fix for this problem is to create a permanent ARP cache entry on the
host, specifying the maximum SDU of 9188 bytes, for the connection to the ARP

server. The steps for configuring the ATM software on the workstation are as
follows:

• Configure the IP interface for your MTU size, 4344 bytes in my example:
ifconfig atm0 ipaddr netmask netmask mtu 4344

• Create a permanent ATM ARP cache entry for the ARP server with SDU
size of 9188:

atmarp -s arpserver arpsrvnsap qos \
ubr:sdu=9188 arpsrv

• Configure the SDU (MTU plus 8 bytes) on the ATM interface:
atmarp -q network ubr:sdu=4352

Refer to Listing 1 for a complete example of configuring the ATM software for
the Efficient adapter.

Using IP over Permanent Virtual Circuits

To establish a PVC, the following steps must be performed.

• On the workstation, add an ATM ARP entry on each node specifying the
PVC (vpi.vci pair) used to connect to each of the other hosts.

• Create the PVC on the switch.

As an example, the following commands executed on the appropriate host will
set up a PVC between nodes named node1 and node2, on interface 0, using a
vpi of 0 and a vci of 70:

• node1: atmarp -s node2 0.0.70

• node2: atmarp -s node1 0.0.70

The PVC is identified by three numbers, separated by two periods. The
numbering scheme is interface.vpi.vci, where interface is 0 for the first ATM
adapter, 1 for the next, etc. The default interface for the atmarp command is 0.
The vpi (virtual path identifier) and vci (virtual channel identifier) are the
standard ATM PVC identifiers. The host name (node1 and node2) can be used if
there is an entry for it in the /etc/hosts file; otherwise, use the IP address of the
host.

The commands above tell node1 to communicate with node2 over PVC 0.0.70

and for node2 to communicate with node1 over PVC 0.0.70. The atmarp
command links the IP address of the target host to the PVC. You could choose a
different PVC for each connection, but it is simpler to think in terms of one PVC
connecting two machines.

The vpi.vci pair must not be in use on the host. Also, any ATM ARP cache entries
must be deleted for the target host before creating the PVC. (These cache
entries are created when SVCs are opened to the destination host.) To delete
an ARP cache entry on node1 for node2, you would use this command:

node1: atmarp -d node2

Next, the switch must be configured to complete the PVC between the hosts. It
is helpful to understand the port naming convention used by the Fore switch.
The port names consist of three identifiers:

• Board: the number of the switch board (same as the SCP number); each
SCP controls one switch board.

• Network Module: the slot (A, B, C, or D) in the switch board containing the
port.

• Port: the physical port number on the network module.

For example, port 1b3 refers to the first switch board, the second network
module (module b) on board 1 and the third physical port on the second
network module. The Fore ASX-200 switch has only one switch board, while the
ASX-1000 switch has four. There is a maximum of four network modules per
switch board and a maximum of six physical ports per module.

You must now create the virtual channels on the ATM switch. In our example,
you would enter these commands on SCP 1:

localhost::> conf vcc
localhost::configuration vcc> new 1a1 0 70 1a2 0 70
localhost::configuration vcc> new 1a2 0 70 1a1 0 70

1a1 is the switch port for node1 and 1a2 is the switch port for node2.

The switch completes the PVC based on the input port to output port virtual
channel connection (VCC) mapping. Note that the PVC vpi.vci (0.70) matches the
vpi.vci given to the atmarp commands on the hosts.

The above commands will connect two ports on the same ATM switch board.
The Fore ASX-1000 switch has up to four switch boards. If you are connecting
machines on different switch boards, the procedure is more complicated, as
you must connect each port to the switch fabric and connect the fabric to each
port. Thus, if you wish to connect a machine on port 1a1 to a machine on port
3a1, the following commands are required:

On SCP 1:

localhost::> conf vcc
localhost::configuration vcc> new 1a1 0 70 1e3 0 70
localhost::configuration vcc> new 1e3 0 70 1a1 0 70

On SCP 3:

localhost::> conf vcc
localhost::>configuration vcc> new 3a1 0 70 3e1 0 70
localhost::>configuration vcc> new 3e1 0 70 3a1 0 70

On the Fore switch, the fabric connections are slot e. Therefore, port 1e3 refers
to a connection from switch board 1 to switch board 3. Likewise, 3e1 refers to a
connection from switch board 3 to switch board 1. Fore refers to these ports as
“intra-fabric” ports.

Testing the Connections

Once the Classical IP setup is complete, all of the standard network tests can be
performed. The simplest test is done by using the ping command to test the
connection. One difference between SVC and PVC connections is a large latency
for the first ping response when using SVCs. The reason for the latency is the
setup time needed to establish the SVC. After the SVC is established, the latency
for SVC and PVC connections should be the same.

After verifying the basic connectivity, you can run some network performance
tests over the ATM connection. I have used the Netperf tool (see Resources) as
well as some benchmarks developed locally. The maximum throughput
performance is very good, around 132Mbps. This number is close to the
maximum payload data rate for an OC-3 ATM network.

Conclusion

I have given instructions needed to set up the switch and hosts on an ATM
network with Linux. The configuration steps given are specific to IP over ATM
connections using the Classical IP standard. In addition to Classical IP, LAN
Emulation (LANE) can be used to carry IP over ATM. LANE is supported by the
Linux-ATM software as well, but configuration of LANE is beyond the scope of
this article. For more information, refer to the documentation in the Linux-ATM
distribution.

Hosts can communicate in several other ways using an ATM interface without
relying on Classical IP. The ATM software supports “native” ATM sockets, where
applications can communicate directly over an ATM connection, bypassing the
IP software completely.

If you are interested in learning about ATM technology but don't have ATM
hardware, the Linux-ATM software can be of help. The software has the

capability to emulate an ATM device using TCP/IP to make the actual
connection. By taking advantage of this support, you can get a head start on
configuring ATM for Linux and learning the ATM programming interface.

NIST

Resources

Wayne J. Salamon is a Computer Scientist in the High Performance Systems and
Services Division at the National Institute of Standards and Technology in
Gaithersburg, MD. He has worked on system software for PCs, UNIX
workstations and IBM mainframes for the past 12 years. When not doing
computer stuff, he appears to play guitar, though only when connected to
vacuum tube amplifiers. Wayne can be reached at wsalamon@nist.gov.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

https://secure2.linuxjournal.com/ljarchive/LJ/058/3005s1.html
https://secure2.linuxjournal.com/ljarchive/LJ/058/3005s2.html
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/058/toc058.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

The GNOME Project

Miguel de Icaza

Issue #58, February 1999

What is GNOME and where is it heading? Miguel tells us all.

GNOME is an acronym for GNU's Network Object Model Environment. GNOME
addresses a number of issues that have not previously been addressed in the
UNIX world, such as:

• Providing a consistent user interface.
• Providing user-friendly tools and making them powerful by leveraging the

UNIX foundation.
• Creating a UNIX standard for component programming and component

reuse.
• Providing a consistent mechanism for printing.

GNOME's main objective is to provide a user-friendly suite of applications and
an easy-to-use desktop. As with most GNU programs, GNOME has been
designed to run on almost all strains of UNIX-like operating systems.

History of GNOME

The GNU GNOME project was initially announced in August 1997. After just one
year of development, approximately two hundred programmers worldwide are
now involved in the project.

The original announcement called for developers to shape the GNOME project
in a number of forums: the GNU announce mailing lists; the Guile mailing list;
and the GTK+ and GIMP mailing lists. The programmers and other people who
influenced the project were mainly free software enthusiasts with diverse areas
of expertise, including graphics programming and language design.

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

The GNOME team has been working steadily toward creating a foundation for
future free software development. GNOME provides the toolkit and reusable
component set to build the free software end users are eager for.

Our recent releases of the GNU Network Object Model Environment have been
GNOME 0.20, the first version of GNOME that showed signs of integrations,
released in May 1998; the Drooling Macaque 0.25 release, with more features;
and finally, our latest public release, GNOME 0.30, codenamed Bouncing
Bonobo.

The GNOME 0.20 release was the first release included in a CD-ROM
distribution. Red Hat 5.1 shipped with a technology preview of the GNOME
desktop environment and it was first demonstrated at the 1998 Linux Expo in
North Carolina.

Before the Drooling Macaque release, GNOME software releases were
coordinated by two or three people on the team. This became a significant
burden, as precious time was being used coordinating each release. We have
been trying to make the release process more modular and have assigned
different modules to package maintainers. Each package maintainer is
responsible for packing, testing and releasing their packages independently of
the main distribution, which we consider to be the core libraries and the core
desktop applications. So far we have had some success, but there is still room
for improvement. We will continue to polish the release process to make it
simpler.

Figure 1

Figure 2

The most recent GNOME release, Bouncing Bonobo, is the first to feature the
GNOME spreadsheet Gnumeric.

Red Hat Advanced Development Labs

In January 1998, Red Hat announced the creation of the Red Hat Advanced
Development Laboratories (RHAD). The initial objective of Red Hat Labs was to
help the GNOME effort by providing code and programmers and by helping us
manage the project resources.

All code contributed to GNOME by Red Hat Advanced Laboratories has been
provided under the terms of the GNU GPL and the GNU LGPL licenses. Several
GTK+ and GNOME developers have been hired by Red Hat and they have
rapidly provided the GNOME project with a number of important features.

https://secure2.linuxjournal.com/ljarchive/LJ/058/3139f1.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/058/3139f1.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/058/3139f1.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/058/3139f2.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/058/3139f2.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/058/3139f2.jpg

For example, Rasterman has implemented themes for GTK+; the GTK+ themes
allow a user to change the appearance of the widgets. This is done by
abstracting the widget drawing routines from the toolkit and putting those
drawing routines in modules that can be loaded at runtime. Thus, the user can
change the appearance of applications without shutting them down or
restarting the desktop.

Figure 3

GTK+ themes are fully working. So far, a number of theme front-ends have
been written. At the time of this writing, available themes include Motif,
Windows95, Metal, native-GTK+ and a general purpose Bitmap-based engine
(see Resources). The web site http://gtk.themes.org/ keeps an up-to-date list
with many contributed themes from which to choose.

Various important changes to the GTK+ toolkit required for the GNOME project,
such as the menu keyboard navigation code and the enhanced “Drag and Drop”
protocols (XDND and Motif DND), were written by Owen Taylor, a famous GTK+
hacker now working for Red Hat Labs.

Assorted applications were created or are maintained nowadays by the GNOME
team at RHAD as well: the Ghostscript front end (by Jonathan Blandford), the
GNOME Help Browser and the GNOME RPM interface (Marc Ewing and Michael
Fullbright), the GNOME Calendar and GNOME Canvas (Federico Mena) and the
ORBit CORBA 2.2 implementation (Elliot Lee).

Other Donations

The GNOME project received a monetary donation from the GNU/Linux Debian
team in the early stages of the project, as well as an Alpha board from Quant-X
Service and Consulting GmbH. We are very grateful for their contributions.

Some Key GNOME Features

The GNOME libraries provide a framework to create consistent applications and
to simplify the programmer's task. More features of the GNOME libraries will be
described later. Some of the most important current developments in the
GNOME libraries are discussed here.

Metadata

One problem faced in a desktop environment is the fact that it is usually
necessary to have a mechanism for storing information about a file's
properties. For example, applications might want to bind an icon for a specific

https://secure2.linuxjournal.com/ljarchive/LJ/058/3139f3.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/058/3139f3.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/058/3139f3.jpg

executable file, or bind a small thumbnail image for a graphic produced by a
graphics program. These icons should be semantically attached to the main file.

The Macintosh OS, for example, provides a way to store this information in the
file as its “resource fork”. This mechanism would be awkward at best to
implement in a UNIX environment. The main problem is that a non-metadata-
aware application can cause the metadata information to get out of sync.

The GNOME metadata was implemented by Tom Tromey at Cygnus, given a
number of design constraints and tradeoffs (described in detail on their web
site). The following is a list of the GNOME metadata features:

1. Binding the information on a per-file basis in a per-user setting, and each
user keeps track of his own bindings. System defaults apply on top of
these.

2. Binding information by file content is done according to the file type using
file signatures, similar to the UNIX file command.

3. Binding information by a regular expression: for example, a default icon
for gif files would be provided by the regular expression .*\.gif$.

4. The metadata system is optimized to provide a coherent GUI solution,
rather than as a compromise or kludge to existing command-line tools.

5. Most ordinary uses of files will continue to work without metadata, just as
they do now.

A number of standard properties for file metadata are available in GNOME. For
example, “View” stores the action for viewing the file contents; “Open” stores
analogous action for editing; “Icon”, which contains the icon, is used for
displaying the file on the desktop.

Metadata types are MIME types.

Canvas

GNOME provides a Canvas widget, patterned after Tk's excellent canvas. This
widget simplifies the programming of applications that need control over
graphical components. The most noticeable feature of GNOME Canvas is that it
provides a flicker-free drawing area where high-level objects can be inserted
and manipulated. Basic zoom and scroll facilities are also a part of the canvas.

Figure 4

The high-level objects inserted into the canvas behave like regular widgets.
They can receive X events, grab the focus and grab the mouse just like a regular

https://secure2.linuxjournal.com/ljarchive/LJ/058/3139f4.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/058/3139f4.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/058/3139f4.jpg

widget. As with their Tk counterparts, GNOME Canvas items can have their
properties changed at runtime with a Tk-like configuration mechanism.

The GNOME Canvas ships with a number of items derived from the
GnomeCanvasItem object: lines, rectangles, ellipses, arrows, polylines and a
generic widget container to embed GTK+ widgets within a canvas. The Canvas
framework is designed to be very extensible. As proof of this extensibility, the
GNOME spreadsheet is implemented on top of the base canvas engine, with
additional functionality provided by spreadsheet-specific CanvasItems.

Note that the current Canvas uses Gdk primitives (a thin wrapper over Xlib
primitives) to draw, so it is limited in the quality and range of special effects
that can be provided with it, which bring us to the next step in Canvas
technology.

Raph Levien is working on an advanced rendering engine for the Canvas. It was
originally developed as a stand-alone widget within his Type1 outline font
editor, gfonted. At the time of this writing, work on integrating the engine into
the Canvas was getting underway.

Features of this engine include:

• Anti-aliased rendering of all items
• Alpha transparency
• Items for vector and bezier paths
• Items for RGB and RGB plus alpha images
• Vector operations, including clip (intersect), union, difference and stroke

layout
• PostScript Type1 font loading and rendering

The engine's design goal is to support almost all of the PostScript imaging
model with the addition of alpha transparency. As such, it is expected to be an
excellent starting point for high-powered graphics applications.

In spite of the ambitious goal of keeping the display up to date with entirely
anti-aliased and alpha-composited items, performance is surprisingly good—
comparable, in fact, to the Xlib-primitive-based canvas engine.

His code is expected to be merged into the main Canvas sometime soon.

Window Manager Independence

GNOME does not depend on a special window manager—any existing window
manager will do. GNOME specifies window manager hints that can be

implemented by the window manager to give the user better desktop
integration, but they are optional. The E window manager implements all of the
GNOME window manager hints and can be used as a reference implementation
for people wishing to extend their window managers to be GNOME-compliant.
The ICEWM manager is tracking those developments and is also considered to
be a GNOME-compliant window manager, although at this time, it is lagging a
bit behind. A few people have shown interest in providing the WindowMaker
and FVWM2 maintainers with patches to make those window managers
GNOME-aware.

Component Programming

Historically, one of the attractions of UNIX has been the philosophy of small
tools that each do one thing well and combining these tools, using pipes and
simple shell scripts, to perform more complex tasks. This philosophy works
very well when data objects are represented as plaintext and operations are
effectively filters. However, this UNIX command-line philosophy does not scale
well to today's world of multimedia objects.

Thus, it would be nice to have a framework in GNOME that would provide
software reuse and component plugging and interaction, i.e., connecting small
specialized tools to carry out complex tasks. With this infrastructure in place,
GNOME applications can once again return to the UNIX roots of simple, well-
specialized tools.

An RPC system was then required for providing this sort of functionality, so we
decided to use CORBA (the Common Object Request Broker Architecture) from
the Object Management Group (OMG). CORBA can be thought of as an object-
oriented RPC system, which happens to have standardized bindings for
different languages.

CORBA opened a range of applications for us. Component programming
allowed us to package programs and shared libraries as program servers that
each implement a specific interface.

For example, the GNOME mail program, Balsa, implements the
GNOME::MailMessage interface that enables any CORBA-aware program to
remotely compose and customize the contents of a mail message and send it.
Thus, it is possible to replace the mail program with any program that
implements the GNOME::MailMessage interface. As far as the GNOME desktop
is concerned, the process just implements the GNOME::MailMessage interface.
This means, for example, that I will be able to continue using GNUS to read my
mail and have GNUS completely integrated with the rest of my desktop. This
also applies to the other components in the GNOME system: the address book,

file manager, terminal emulation program, help browser, office applications
and more.

Beside providing the basic GNOME interfaces, applications can provide an
interface to their implementation-specific features. This is done by using
CORBA's interface inheritance. A specific interface would be derived from the
more general interface. For example, GNUS would implement the
GNOME::MailMessage interface and extend it with GNUS-specific features in
the GNOME::GnusMailMessage interface. This interface would hypothetically
allow the user to customize GNUS at the Lisp level, something other mailers
may not do. Another example would be a GNOME::MozillaMailMessage

interface that would let a user configure the HTML rendering engine in Mozilla
mail.

Not only does CORBA address these issues, but it can also be used as a general
interprocess communication engine. Instead of inventing a new ad-hoc
interprocess communication system each time two programs need to
communicate, a CORBA interface can be used.

Embedding documents into other documents has been popularized by
Microsoft with their Object Linking and Embedding architecture. A document-
embedding model similar in spirit is being designed for GNOME (the Baboon
model), and all of the interprocess communication in this model is defined in
terms of CORBA interfaces.

Initially, we were very excited by the possibilities CORBA presented us, but we
soon realized that using CORBA in the GNOME desktop was going to be more
difficult than we expected.

We tried using Xerox's ILU for our CORBA needs. The license at the time did not
permit us to make modifications to the code and redistribute them, an
important thing for the free software community, so we had to look for
alternatives. Xerox has since changed the licensing policy.

After evaluating various free CORBA implementations, we settled on MICO, as it
was the most feature-full free implementation. MICO was designed as a
teaching tool for CORBA, with a primary focus on code clarity.

Unfortunately, we soon found that MICO was not a production-quality tool
suitable for the needs of GNOME. For one, we found that the rather
indiscriminate use of C++ templates (both in MICO and in MICO-generated
stubs) proved to be a resource hog. Compiling bits of GNOME required as much
as 48MB of RAM for even the simplest uses of CORBA, and this was slowing
down our development. Another problem was that MICO supported only the

C++ CORBA bindings. Even though an initial attempt had been made at
providing C bindings, they were incomplete and not well-maintained.

To address these problems, Dick Porter at i2it and Elliot Lee at Red Hat Labs
wrote a C-based, thin and fast CORBA 2.2 implementation called ORBit. As soon
as ORBit became stable, the use of CORBA throughout GNOME began, after a
delay of almost eight months.

With an efficient, production quality CORBA implementation under our control,
we can ensure that CORBA-enabled interprocess communication is a valuable
service for application programmers, rather than a source of overhead and
bulk.

Dissecting a GNOME Desktop Application

The toolkit

GNOME desktop applications have been built on top of the object-oriented
GTK+ toolkit originally designed as a GUI toolkit for the GNU Image
Manipulation Program (GIMP).

GTK+ has been implemented on top of a simple window and drawing API called
Gdk (GTK Drawing Kit). The initial version of Gdk was a fairly thin wrapper
around the Xlib libraries, but a port to Win32 and a port to the Y windowing
system are presently in alpha stages.

GTK+ implements an object system entirely in C. This object system is quite rich
in functionality, including classical single inheritance, dynamic creation of new
methods and classes, and a “signal” mechanism for dynamically attaching
handlers to the various events that occur in the user interface. One of GTK's
great strengths is the availability of a wide range of language bindings,
including C++, Objective-C, Perl, Python, Scheme and Tom. These language
bindings provide access both to GTK+ objects and to new objects programmed
in the language of choice.

An additional feature of GNOME is Rasterman's Imlib library. This library is
implemented alongside Gdk and provides a fast yet flexible interface for
loading and saving images and rendering them on the screen. Applications
using Imlib have quick and direct access to PNG, GIF, TIFF, JPEG and XPM files as
well as other formats available through external conversion filters.

The Support Libraries

C-based GNOME applications use the GLIB utility library. glib provides the C
programmer with a set of useful data structures: linked lists, doubly linked lists,

hash tables (one-to-one maps), trees, string manipulation, memory-chunk
reuse, debugging macros, assertion and logging facilities. glib also includes a
portable interface for a dynamic module facility.

The GNOME libraries

The GNOME libraries add the missing pieces to the toolkit to create full
applications, dictate some policy, and help in the process of providing
consistent user interfaces as well as localizing the GNOME applications so they
can be used in various countries.

The current GNOME libraries are GTK+-Xmhtml, gnome-print, libgnome,
libgnomeui, libgnorba, libgtop, gnome-dom and gnome-xml. Other libraries are
used for specific applications: libPropList (soon to be replaced by a new
configuration engine) and audiofile.

The main non-graphical library is called libgnome. This provides functions to
keep track of recently used documents, configuration information, metadata
handling (see below), game score functions and command-line argument
handling. This library does not depend on the use of a windowing system.

As we use CORBA to achieve parts of our desktop integration, we have a special
library called the libgnorba library to deal with various CORBA issues. It
provides GUI/CORBA integration (to let our GUI applications act as servers),
authentication within the GNOME framework and service activation.

The gnomeui library, on the other hand, has the code that requires a window
system to run. It contains the following components:

• The GNOME session management support
• Widgets, both as straightforward extensions of GTK+ and designed to be

dependent on libgnome features
• A set of standard dialog boxes otherwise not available on GTK+, well-

integrated with other GNOME libraries
• Standard property configuration dialog boxes
• Standard top-level window handling
• A multi-document interface (gnome-mdi)
• Windowing hints
• CORBA integration where required

GTK+-XmHTML is a port of the Koen D'Hondt's XmHTML widget for Motif and is
used for our HTML display needs. Our changes are being folded back into the
main distribution.

The lib gtop library allows system applications to be easily ported to various
operating systems; it provides system, process and file system information.

gnome-xml provides XML file loading, parsing and saving for GNOME
applications and is being used in the GNOME spreadsheet (Gnumeric) and in
the GNOME word processor program. gnome-dom provides an implementation
of the World Wide Web Consortium's Document Object Model for GNOME
applications. By the time you read this article, gnome-dom will have been
deployed widely in the GNOME office applications. Both gnome-xml and
gnome-dom were developed by Daniel Veillard from the World Wide Web
Consortium.

Figure 5

gnome-print implements GNOME's printing architecture. It consists of a
pluggable rendering engine as well as a set of widgets and standard dialog
boxes for selecting and configuring printers. In addition, gnome-print is
responsible for managing outline fonts and contains scripts that automatically
find fonts already installed on the system.

The GNOME print imaging model is modeled after PostScript. Basic operations
include vector and bezier path construction, stroking, filling, clipping, text (using
Type1 fonts, with TrueType to follow shortly) and images.

Currently, gnome-print generates only PostScript output. However, the design
of the imaging model is closely synchronized with the anti-aliased rendering
engine for the Canvas and it is expected that these two modules will be
interoperating soon. In particular, it will be possible to “print” into a canvas
(useful for providing a high-quality screen preview) and to print the contents of
a canvas. This feature should simplify the design of applications which use the
Canvas, as very little extra code will be needed to support printing.

The same rendering engine will be used to render printed pages directly
without going through a PostScript step. This path is especially exciting for
providing high-quality, high-performance printing to color ink-jet printers, even
of complex pages containing transparency, gradients and other elements
considered “tricky” in the traditional PostScript imaging model.

Bindings

One explicit goal of GNOME was to support development in a wide range of
languages, because no single language is ideal for every application. To this
end, bindings for both GTK+ and the GNOME libraries exist for many popular

https://secure2.linuxjournal.com/ljarchive/LJ/058/3139f5.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/058/3139f5.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/058/3139f5.jpg

programming languages, currently C, C++, Objective-C, Perl, Python, Scheme
and Tom.

The early involvement of Scheme, Tom and Perl hackers in both the GTK+ and
GNOME projects has helped in making the GTK+ and GNOME APIs easy to wrap
up for various languages. Multi-language support is “baked in” to the design of
GTK+ and GNOME, rather than being added on as an afterthought.

Development model

GNOME is developed by a loosely coupled team of programmers around the
world. Project coordination is done on the various GNOME mailing lists.

The GNOME source code is kept on the GNOME CVS server (cvs:cvs.gnome.org:/
cvs/gnome/). Access to the source code through Netscape's Bonsai and LXR
tools is provided at http://cvs.gnome.org/, to help programmers get acquainted
with the GNOME source code base.

Most developers who have contributed code, major bug fixes and
documentation to GNOME have CVS write access, fostering a very open
atmosphere. GNOME developers come from a wide range of backgrounds and
have diverse levels of skill and experience. Contributions from less experienced
people have been surprisingly helpful, while the older, wiser coders have been
happy to mentor younger contributors on the team. The GNOME developer
community values clean, maintainable code. Even programmers with many
years of coding experience have noted how involvement with the GNOME
project has helped them write better code.

The GNOME Office Suite Applications

As the GNOME foundation libraries become more stable, the development of
larger programming projects has become possible and has allowed small
teams of developers to put together the applications which will make up the
GNOME office suite.

As with other GNOME components, the GNOME office suite is currently
catching up with commercial offerings. By providing an office suite which is
solid, fast and component-based, the code written for the GNOME project
might become the foundation for a new era of free software program
development.

The office suite leverages a lot of knowledge many of us have acquired during
the past year while developing various GNOME components. Our coding
standards are higher, the quality is better and the code is more clean and more
robust.

The availability of these applications has provided us with the test bed we
required to complete our document embedding interfaces (the Baboon model).

Two word processing projects are going on for GNOME: one of them is GWP by
Seth Alves at the Hungry Programmers and the other one is Go from Chris
Lahey. GWP is currently more advanced and has printing working with the
GNOME printing architecture.

Gnumeric, the GNOME spreadsheet project, is aimed at providing a
commercial-quality spreadsheet with advanced features. It provides a
comfortable and powerful user interface. As with other components in GNOME,
we have worked toward providing a solid and extensible framework for future
development.

Recently, work has begun on Achtung, the GNOME presentations program. It is
still in the early stages of development.

Getting GNOME

Tested source code releases of GNOME are available from GNOME's ftp site:
ftp://ftp.gnome.org/.

It is also possible to get the very latest GNOME developments from the
anonymous CVS servers. Check the GNOME web page for details on how to pull
the latest version straight from the CVS servers.

Breaking news about GNOME is posted to the GNOME web site in http://
www.gnome.org/, along with documents to get you started on GNOME and
developing GNOME applications.

Resources

Acknowledgments

Miguel de Icaza is one of the GNU Midnight Commander authors as well as a
developer of GNOME. He also worked on the Linux/SPARC kernel port. He can
be reached via e-mail at miguel@gnu.ai.mit.edu.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

https://secure2.linuxjournal.com/ljarchive/LJ/058/3139s2.html
https://secure2.linuxjournal.com/ljarchive/LJ/058/3139s1.html
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/058/toc058.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

KDE: The Highway Ahead

Kalle Dalheimer

Issue #58, February 1999

Mr. Dalheimer describes some of the plans being made for future versions of
KDE.

The K Desktop Environment (KDE, see http://www.kde.org/) has already
generated a lot of interest, and many individual users and institutions alike are
using it as their desktop environment of choice. However, nothing is so good
that it doesn't have room for improvement. Since the beginning, we have
considered stability more important than sticking to announced dates, so there
have been occasional delays when we considered KDE not stable enough for a
release. That said, we hope to release KDE 1.1 after one or two beta versions by
the end of 1998. This version will contain a number of bug fixes, the much
sought-after support for ICQJava, more robustness in the HTML display code
and a few new features such as configurable key bindings for the whole
desktop. Originally, we had planned to release only bug fixes as version 1.0.1.
However, the completed new features have been requested many times and
we don't expect to have 2.0 stable for some time, so we want to include
everything that is ready. This way, we can move on at full steam after 1.1 is
released.

Figure 1. KDE 1.1 Desktop

Figure 2. KDE 1.0 Desktop

KDE 2.0, the next “official” version, will probably be out in late summer 1999,
but this is still uncertain. In the meantime, we will also release a first alpha
version of KOffice (discussed below).

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1
https://secure2.linuxjournal.com/ljarchive/LJ/058/3216f7.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/058/3216f7.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/058/3216f7.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/058/3216f8.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/058/3216f8.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/058/3216f8.jpg

Planned Features for KDE 2.0

We plan substantial rewrites and reorganizations of KDE for version 2.0. This
will probably lead to snapshots that are unstable or don't compile, but as
always, KDE follows the open-source model closely and makes daily snapshots
available via the FTP site and the CVSup server. (CVSup is a software package
for distributing and updating source trees from a master repository on a
remote server host.)

Some of the new code that will go into KDE 2.0 belongs to the area file
manager/web browser/networking code. Most of the new code is already
written and just waiting to be committed to the CVS after the release of KDE
1.1. Changes include a complete rewrite of the file manager and the networking
code which provides a great improvement over the current version, the ability
to browse compressed archives and a complete overhaul of the user interface
of the file manager. Related to this is the HTML widget currently in the process
of being reorganized to make it more adaptable to new HTML standards and to
provide better support for JavaScript and a free Java virtual machine. (kaffe,
http://www.kaffe.org/, is a candidate if it supports standard AWT, Abstract
Window Toolkit, programs by then.) Most of this is not just vaporware or simply
plans for the future, but existing code, part of which is also available via the
CVSup server with anonymous access.

Another program to be completely rewritten is the mail program KMail. The
new version, dubbed KMail 2, will be more robust and flexible with respect to
various attachments and feature IMAP support.

Of course, there is not only revolution such as complete rewrites, but also
evolution as seen in the continuous development of existing features. More
and more configuration modules are being added to the control center and we
plan to provide more modules geared specifically toward system
administrators. We hope to be able to support both LinuxConf and COAS
(Caldera Open Administration System), but are definitely in need of more
skilled developers to help in this area.

Another area of improvement is the drag-and-drop protocol where we will
switch from our “homegrown” protocol to the XDND protocol, since it will likely
become the future drag-and-drop standard on (at least free) UNIX systems and
is currently supported by programs written with the JX toolkit. The GNOME
developers have indicated that they will also support this protocol, possibly
leading to a first point of interoperability between the KDE and GNOME
programs.

We will also make use of some new features provided by version 2.0 of Qt, the
toolkit used with KDE. Among these are themes and Unicode support. Themes

are something I personally consider less important for a desktop aimed at
improving productivity, but I know a lot of users want it and we aim to please.
Note that some theme ability is currently in KDE (see e.g., http://
kde.themes.org/), but the new code will extend this to single widgets within the
application windows.

Plans have been made to tear the window manager engine out of the window
manager KWM and put it into the library, so that there can be different window
managers to implement a different look-and-feel and still provide the window
manager functionality needed by a full-featured KDE desktop.

Unicode (see http://www.unicode.org/) is very important to gain acceptance in
the Far East and other areas of the world with scripts containing more than 256
characters. Two Chinese localizations of KDE already exist, but these require a
patched X server that combines two character codes transmitted for display
into one. With Unicode support, such tricks will not be necessary, as the KDE
message files can then contain 16-bit characters directly.

The usability of Unicode support is based heavily on availability of decent fonts
for the script in question, something UNIX systems have traditionally been
lacking. I have been looking at integrating the free True Type engine Freetype
into KDE, but this is still in the beginning stages. (Contributions are welcome.)
Another option is using a font server that supports True Type fonts.

Another area where work is being done is making KDE accessible for
handicapped users. It is already possible to use very large fonts with KDE
programs and especially to set such a large font once and for all for all KDE
applications, so that people with slight vision impairment can use KDE
programs, but this is not enough. We have had some success with voice-type
software, i.e., software that allows users to navigate and operate the desktop
and applications by speaking commands into a microphone. We are working
with universities on leveraging their research results and making usable
programs out of them. Another feature that falls into this category but has not
been addressed yet is screen readers, i.e., software that reads out whatever is
visible on your screen via your sound card and the speakers. While the
necessary text-to-speech synthesis is a non-trivial problem (even though
programs such as emacspeak show that it can be done in free software), screen
readers become even more difficult to write when graphical user interfaces are
involved, because a single text flow is no longer available as on terminal
screens.

The topic most interesting to readers is the development of KOffice. KOffice
(see http://koffice.kde.org/) is intended to be a complete office productivity
suite like Microsoft Office or Lotus SmartSuite. It is CORBA-based (using the
high-quality, freely available ORB Mico that makes good use of today's compiler
technology) and uses the Open Parts as its object model. Open Parts is the
master's thesis topic of one of our developers and provides a rich object model
on top of the rather bare-bones CORBA standard, including addition of event
services and event filtering to CORBA. Open Parts can even be used with non-
KDE applications.

Not only the large KOffice applications will use CORBA, but this technology will
also be used in other areas, including the panel which would then be better
able to swallow other programs. On the other hand, adding CORBA compliance
to a relatively small program like the panel means bloating it, and we still have
to investigate whether this is truly worth it.

Figure 3. KPresenter

Figure 4. KSpread

Currently, KOffice consists of the following applications which, as I write, have
different levels of usefulness. First, there is KPresenter (see Figure 3), a
presentation program in the spirit of MS PowerPoint that has already been
used for “real work” (like my KDE presentation at the last International Linux
Congress in Cologne) and features a large number of blending effects. Then,
there is KSpread (see Figure 4), a spreadsheet that already contains about 20%
of the functionality of MS Excel and is easily extensible via scripts written in
Python.

A recent addition to KOffice is KWord, a word processor aimed at smaller size
documents like personal letters, as well as complete books. Besides normal
word processing features, it also has some features known from DTP programs,

https://secure2.linuxjournal.com/ljarchive/LJ/058/3216f1.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/058/3216f1.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/058/3216f1.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/058/3216f2.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/058/3216f2.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/058/3216f2.jpg

such as Adobe FrameMaker. For large documents or those containing many
formulas, it might be better still to use KLyX, a WYSIAWYG (what-you-see-is-
almost-what-you-get) document processor that uses LaTeX as its formatting
engine and is based on its older brother, LyX. KLyX is not yet as fully integrated
into the KOffice concept as the other applications, but hopefully it will be in the
near future.

Figure 5. KIllustrator

Figure 6. KFormula and KImage

The KOffice application that is probably most advanced at the moment is
KIllustrator (see Figure 5), a vector-based drawing package. It features a lot of
drawing tools and is very usable. Two other applications of KOffice are
KFormula (see Figure 6), a mathematical formula typesetter; and KImage, a
smaller image-manipulation program. Finally, there is KChart, a component for
drawing business graphs such as bar charts and pie charts; and KOrganizer, an
organizer program in the spirit of Lotus Organizer that is quite usable and
sports many features and different views.

Since all KOffice programs are based on the Open Parts framework, they can all
be embedded into each other. You can nicely embed a spreadsheet document
into your word processor document and beef the whole thing up with a vector
drawing done with KIllustrator. This embedding also features in-place activation
with dynamic menu bars, and unlike other embedding technologies on some
platforms we like to hate, it is quite stable.

We are very aware that for Linux to become a viable alternative to Windows or
the Macintosh, it must feature a consistent easy-to-use desktop and also have
an office productivity suite that need not (or should not) be as bloated as
Microsoft Office, but definitely needs the features used on a daily basis and
must be able to read common document formats. Unfortunately, Microsoft
Office formats are not well-documented. Still, with the help of the work done in
LAOLA (library for Microsoft structured storage files), we hope to be able to
support at least some of them. Even though I think this is a boring task (if
somebody thinks I am wrong here, you are welcome to help with this project),
we will also write an RTF reader and writer, and I have already successfully
imported some FrameMaker documents via my homegrown filter into KWord.
Whether other formats (such as WordPerfect, StarOffice or the Lotus
SmartSuite) will be supported depends on two things: whether the respective
manufacturers will make their format documentation available and whether
someone volunteers to do the work.

https://secure2.linuxjournal.com/ljarchive/LJ/058/3216f3.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/058/3216f3.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/058/3216f3.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/058/3216f4.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/058/3216f4.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/058/3216f4.jpg

Summary

As you can see, many things are happening in the KDE world and development
is occurring faster than ever. As with all free software projects, we can be only
as good as the people who support us, so if you are interested in GUI hacking,
writing file-format filters or any of the other topics I have mentioned (or
something completely different that fits into the overall KDE concept), don't
hesitate to contact us (see http://www.kde.org/ for contact information). This is
truly an exciting project to be in.

Kalle Dalheimer is a freelance software consultant and a technical writer/
technical editor for O'Reilly. He is a member of the KDE core team, where he is
in charge of the libraries and some of the applications. When not hacking or
writing, he plays with his two-year-old son, setting up wooden miniature railway
systems. He can be reached via e-mail at kalle@dalheimer.de.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/058/toc058.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

P-Synch

Tim Parker

Issue #58, February 1999

P-Synch uses a number of scripts and API routines to perform all the password
changes on your network from a single location.

• Manufacturer: Mercury Information Technology, Inc.
• E-mail: sales@m-tech.ab.ca
• URL: http://www.m-tech.ab.ca/
• Price: Customized
• Reviewer: Tim Parker

One of the annoyances of administering networks is the need to change
passwords regularly. We change passwords often for security reasons and
that's fine. What bothers me is the need to log in to each machine individually
and run the password changing programs on each one, then log into each
individual application that has its own user and password lists independent of
the host machine and change the passwords there. My office network requires
over thirty such changes; my home network, eight.

If I were running only UNIX, then I could use NIS and let that service change my
machine passwords for me. However, NIS doesn't change non-UNIX passwords
and doesn't do anything for application passwords. The same applies to
Windows NT-based domains, where a central user list is maintained. Domain
users don't extend to UNIX or applications. Utilities exist to provide some cross-
platform support for NIS and NT domains, but I haven't found one that works
well across my mixed network platforms.

Obviously, this is a problem that has plagued users for years. The folks at M-
Tech (Calgary, Alberta) have done something about it. M-Tech's solution is
called P-Synch (for password synchronization). It uses a number of scripts and

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

API routines to perform all the password changes on your network from a
single location. (It is an obvious solution, once you've seen it work.) I first
encountered P-Synch two years ago in an earlier version and have used it
religiously on my own networks, recommended it to many clients and written
about it extensively since. A Linux implementation of P-Synch was an obvious
spinoff of the UNIX version. Even better, M-Tech has released a new version of
P-Synch which adds several new features that make it more functional and
easier to manage.

As you may have gathered from the comments above, P-Synch uses scripts to
change passwords on all applications and machines you tell it to access. P-
Synch accomplishes this by using either a native API or TELNET to log in to each
machine or application one at a time, running whatever commands are
necessary to modify the passwords. You specify only the password to change to
(or to reset) and P-Synch runs through its list of targets in the background.
Since only a single copy of P-Synch is required anywhere on the network, no
client programs need to be installed on each machine. The user interface can
be character-based, GUI or HTML. An administrator defines which machines
and applications a user can modify passwords on, as well as more advanced
options such as password aging.

Since P-Synch is script-based, it can change passwords on any machine or
application that can be logged in to using TELNET or for which an API can be
written. The list of M-Tech-provided scripts for operating systems is lengthy:
Linux, many versions of UNIX, NetWare, Windows 95/98 and NT, LAN Manager,
PathWorks, MVS and VMS. Application scripts available from M-Tech include
Oracle, Sybase, SQL-Server, cc:Mail, MS-Mail, Exchange, GroupWise and
GroupWare (including Lotus Notes). Scripts for other targets are starting to
appear in Usenet newsgroups and on web pages, mostly written by P-Synch
administrators.

The documentation for P-Synch may be downloaded from the M-Tech web site
in PDF, PS or HTML formats. You can download uncompressed, ZIP or GZIP
versions. The installation and configuration guide is about 260 pages long, but
you will likely need to examine only a few pages to install P-Synch properly.
Instead of printing the entire document, an Acrobat or PostScript viewer is best
used to find those sections of interest. (Viewing on-line saves both time and
paper.)

If you are running NIS (or a Windows-based alternative), P-Synch needs to run
on the master. P-Synch will not function properly if installed on a client of an
NIS master. (NIS does not allow administrative password changes from clients.)
If you are not running NIS or a similar network-wide user management system,
P-Synch can reside on any machine on the network. All machines must be

running TCP/IP. P-Synch can coexist quite happily with NIS, handling the non-
NIS targets only, if you prefer.

Prior to installing P-Synch, you must gather a list of the IP addresses of each
machine on which P-Synch will change passwords. P-Synch requires root (or
equivalent) access on each of these machines. It is handy to create a test
account or two on the server and a few clients to make sure P-Synch is
performing its tasks properly before trusting it to your network-wide password
management. These test accounts can be deleted after testing or saved for
other purposes. A complete installation takes about 4MB of disk space
(noticeably down from the last version's requirement of 9MB).

Installing P-Synch takes only a few minutes; however, configuring for a network
with several applications and operating systems can take a while longer. The
usual installation procedure is to copy or download the files to your Linux
machine and extract the files in the library (tar, gzip or zip). One such library file
is called unix_srv.tar and contains binaries for all supported UNIX and Linux
platforms. After extracting this tar file, an installation shell script is run which
handles the file setup procedure. A manual check of a configuration file to
ensure it has the proper location for the passwd file (by default, it assumes /
etc/passwd) completes the file setup. P-Synch normally uses TCP port 106, but
this can be changed if port 106 is in use by another service. To test the
installation, a TELNET session to the TCP port should produce a password
prompt, at which point the installation is finished. The installation guide
contains a list of common problems encountered when setting up P-Synch and
they should account for most Linux system configurations.

P-Synch uses a script called psynch.conf to manage password changes.
Separate parts of the program control users changing their own passwords, as
well as root changing any password. On Linux and UNIX systems, P-Synch
modifies passwords directly by interaction with the passwd program, not
through a script (which would provide a potential security hole). The
psynch.conf script can be edited if necessary, which makes it easy to handle
special requirements such as firewalls and proxies as well as encryption
schemes that manage password files. For non-UNIX passwords, P-Synch's
psynch.conf file must be modified to use a script for password changes. M-Tech
provides a number of prewritten scripts for different operating systems as well
as applications that reside on UNIX or Windows machines (such as Oracle,
Lotus Notes and so on). Non-UNIX systems require changes to the inetd file,
but these can be cut-and-pasted from M-Tech's documentation or scripts. Linux
and UNIX versions of P-Synch require a login called psadmin, which is used by
the server to verify that P-Synch agents on other machines are allowed to
change passwords. The psadmin login should be set up so that it has no access
privileges.

Our test network consisted of three Linux machines (two Red Hat and one
Slackware), four that were SCO OpenServer or UnixWare and three Windows
NT servers, along with twelve Windows 95/98 machines. The server applications
were Oracle 8, Lotus Notes, Exchange, Novell GroupWise and SQL-Server (all on
the Windows NT servers). On this network, installation and configuration of P-
Synch took about two hours. Most of that time was spent setting up the non-
Linux/non-UNIX password change routines, with about half an hour required to
debug the various scripts. If you are working on a Linux-only network, the
process will take less than ten minutes.

Once properly configured, users anywhere on the network could run the P-
Synch routines to modify their own passwords. The HTML interface in particular
is friendly and attractive. Users can specify which machines or applications the
change affects, or accept all (the usual case). Administrators can change
passwords from any client. The amount of time required for a password
change depends on the network load, the number of targets and the nature of
the operating systems. On our test network, the password changes went
quickly, completing in under two minutes.

To test P-Synch with NIS, we set up one of the SCO machines as an NIS master
and a Red Hat Linux system as the slave. We let NIS handle the password
changes on half of the UNIX and Linux machines while P-Synch handled the rest
of those types as well as the Windows machines. Propagation time for
password changes didn't drop noticeably, which was expected since the
Windows and application scripts are the major time consumers.

P-Synch is usually licensed to networks based on the number of users. M-Tech
will customize the pricing plan to suit your requirements. Earlier versions of P-
Synch cost about $10 per user; the latest version is likely to be similarly priced.
If you don't want to worry about the password-changing hassle anymore, you'll
find P-Synch to be a wonderful utility. It is fast, clean, easy to use and worth
every penny. The benefits are multiplied many-fold on heterogenous networks.
If you want more information about P-Synch, or want to download the
application itself for evaluation, check out the M-Tech Web site at http://
www.m-tech.ab.ca/. For the curious, a white paper describing P-Synch is
available in Acrobat PDF and PostScript formats.

Tim Parker lives in Ontario, Canada, and can be reached via e-mail at
tparker@tpci.com. He is a widely published UNIX author with over 1,000 articles
and 40 books on the subject. Dr. Parker's latest book is Linux Unleashed, Third
Edition published by Sams. When not writing, Tim flies planes, scuba dives and
argues with his temperamental network of thirty PCs and workstations. He
often loses the arguments.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/058/toc058.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

The login Process

Andy Vaught

Issue #58, February 1999

The beginning of it all....

Virtually all Linux sessions begin with the user typing his user name at a prompt
that looks like this:

login:

In this article, I will explain a little about what really happens behind the scenes
and what contortions the system goes through to get a user going.

A Bit about the Shell

First, a quick look at the shell. The shell, which is just a program like any other,
reads the characters you type and looks for a program with the same name.
Program names are typed at the prompt and executed by the shell. Ending a
command line with the & character causes the command to be run in the
background.

The shell runs a program in two steps. First, the shell does an operation called a
“fork”. Forking creates a new process that looks just like the original process,
inheriting many attributes of its parent such as any open files and user ID.
Although it is an exact copy of the shell program, the “child” process does not
read user commands. The child shell immediately does an operation called an
“exec”, short for “execute”, in which it causes the Linux kernel to load the new
program over the top of the child shell and run that program in its place.

At this point, the original shell simply waits for the child program to finish. Once
done, it gets the next line of input from the user, then the whole procedure is
repeated. In an active UNIX system, this sort of thing is happening all the time.
Even on fairly inactive systems, processes are still run to do housekeeping
chores, while others are simply sleeping and waiting for something to happen.

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

From the bash shell, you can see how exec works by typing

exec ls -l

The ls command runs as usual, but when it is done, you are no longer logged in.
The shell is replaced by ls, and when it finishes, it is as if your shell had finished.

How Does it All Get Started?

When the kernel is first loaded into memory, it initializes itself and any
hardware that may be attached to the computer. Once the kernel is established
enough to be able to run programs, it does. The first program is called “init”; its
job is to function as the ancestor of all processes.

When init starts, it reads a file called inittab, usually located in /etc. This file tells
init which programs should be run under which conditions. Not only does init
run the startup scripts that bring the rest of the system up, but init also takes
care of shutting the system down.

One of the responsibilities of init is running the programs that let users log into
the system. For a terminal (or virtual console), the two programs used are getty

and login. getty is short for “get terminal”. A basic getty program opens the
terminal device, initializes it, prints login: and waits for a user name to be
entered. Modern getty programs (several are available for Linux) can do other
things as well—if the terminal device is a (recent) modem, they can read status
codes sent by the modem to tell if the call is voice or fax and handle the call
appropriately. Most of the time, though, someone just wants to log in, so getty
executes the login program, giving the user name to log in via the command
line.

The login program then prompts the user for a password. If the password is
wrong, login simply exits. The init process then notices that one of its children
has exited and spawns another getty process on the terminal in question. If the
password is good, login changes its process user ID to that of the user and
executes the user's shell. At this point, the user can type commands. When the
user exits by typing the shell's built-in logout command, the shell exits and init
notices that its child has exited and spawns another getty on the terminal.

Why are two separate programs used to log in instead of just one? The answer
is that doing it this way provides more flexibility. For example, getty doesn't
have to execute login—it can execute a program to receive (or send) faxes, a
PPP daemon to emulate a network connection over a serial line, or if you have
a modem with “voicemail”, one of those phone tree programs that people hate
so much (“press five to hear these options again”).

Similarly, login is sometimes needed without getty; for example, when a user
logs in over a network, no terminal device is waiting. Instead, each new
connection is handled by a program called telnetd that forks and executes a
login process. telnetd remains to pass characters between the network and the
new shell.

As a partial example of how the process works, Listing 1 shows an autologin

replacement for getty. This replacement is meant for people who are tired of
typing their user ID and password for the bazillionth time. You can boot Linux
and have it drop straight into a couple of shells—sort of like DOS, but with
virtual consoles.

To install autologin, copy it to the /sbin (system binaries) directory and type:

chmod +x /sbin/autologin

as root. Still as root, edit the /etc/inittab file and change the lines that look like
this:

c1:12345:respawn:/sbin/getty 38400 tty1

to:

c1:12345:respawn:/sbin/autologin tty1 login -f myid

replacing myid with your own user ID. Red Hat installations typically do not
have the letter c at the beginning of the line.

Be sure to leave some of the lines containing getty exactly as they are—if you
do something wrong, you are going to need a way to log into your system. On
my own system, I change c1 through c3 and run three initial shells. Once the file
is edited, reboot the system and all should work.

The first argument to autologin is the name of the terminal. The rest of the
command line is used as the login command that does the work.

A Synopsis of autologin

The first line tells the kernel how to run this program, in this case by letting the
bash shell interpret it. The first exec line is a Bourne shell trick that lets a shell
script change the source/destination of its standard input, standard output and
standard error. We want to set file descriptors 0, 1 and 2 to refer to the
terminal device as expected by login (and many other programs) when they
run. The cat command displays the system's standard logon message. The shift

command shifts the positional parameters to the shell script. Argument $1 is
deleted, argument $2 becomes $1, argument $3 becomes $2 and so on. The

https://secure2.linuxjournal.com/ljarchive/LJ/058/3121l1.html

last line executes the rest of the command line as a program. In this case, the
login -f option performs the normal login procedure, with the -f option telling
login not to bother with passwords.

Andy Vaught is currently a Ph.D. candidate in computational physics at Arizona
State University and has been running Linux since 1.1. He enjoys flying with the
Civil Air Patrol as well as skiing. He can be reached at andy@maxwell.la.asu.edu.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/058/toc058.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

Caching the Web, Part 2

David Guerrero

Issue #58, February 1999

This month Mr. Guerrero tells us about the definitive proxy-cache server, Squid.

Last month we discussed the basic concepts of proxy servers and caching. Now,
let's see how to implement this technology in your organization. A few proxy-
server programs are on the market, such as MS-PROXY, aka Catapult, available
only for Windows NT, and Netscape Proxy Server, available for different UNIX
platforms and Windows NT. Both have two main drawbacks: they are
commercial software and they don't support ICP. The excellent Apache web
server has included a proxy-cache module since its 1.2 version. This module is a
very interesting option: it's free, and works with the most popular web server
on the Net. However, it doesn't use ICP, and its robustness is not comparable to
the best choice for a proxy-cache server—Squid.

Squid is a high-performance proxy-cache server derived from the cache module
of the Harvest Research Project, maintained by Duane Wessels. It supports FTP,
gopher, WAIS and HTTP objects. It stores hot objects in RAM and maintains a
robust database of objects in disk directories. Squid also supports the SSL
protocol for proxying secure connections and has a complex access control
mechanism. Another interesting feature of Squid is negative caching, which
saves “connection refused” and “404 Not Found” replies for a short period of
time (usually five minutes).

Squid consists of four programs:

• squid: the main proxy server
• dnsserver: a DNS lookup program that performs single, blocking DNS

operations
• unlinkd: a program to delete files in the background from the cache

directory

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

It also provides a CGI program, designed to be run through a web interface,
that outputs statistics about its configuration and performance and allows
some management capabilities.

Squid Installation

Installing Squid is easy. Just download the source archive from http://
squid.nlanr.net/ and, in a temporal directory, type:

gzip -dc squid-x.y.z-src.tar.gz | tar xvf -

Next, compile and install the software by typing:

cd squid-x.y.z
./configure
make all
make install

These commands install all needed programs and configuration files to /usr/
local/squid. The binary programs are installed in the /bin directory, the
configuration files in /conf. Log files are located in the /logs directory, and the
object database in the cache directory and its subdirectories. A shell script
called RunCache is in the bin directory used to run the squid binary, and
assures that if the process dies for any reason, it is restarted automatically. So,
put the following line in your rc.local file:

/usr/local/squid/bin/RunCache &

This will generate an error log in /usr/local/squid/squid.out, if Squid could not
start because of some configuration problem.

Of course you can choose to install an RPM version of Squid if you use RedHat
Linux or another distribution that supports RPM packages.

Squid installs a sample configuration file called squid.conf with many
comments for each option. Here you can change the ICP and HTTP ports (3128
by default) and define how much memory and disk space to reserve for caching
objects and other parameters such as refresh patterns and access control
restrictions. Of course, you need an ICP port only if your cache is going to be
the sibling or parent of other caches. The directives for changing these values
are http_port, icp_port, cache_dir and cache_swap. Additionally, you can set the
maximum object size to be stored in the database; the default is 4MB. Also, you
should uncomment the following lines in this file:

cache_effective_user nobody
cache_effective_group nobody

This avoids running Squid as root, a dangerous habit for anyone who runs
servers like httpd or gopherd. If you are using a recent version of Squid (at the
time of this writing, the current version is 1.1.16), it will not start running as
root, but will write an error message to the squid.out file.

To let Squid use 100 MB of your HD, the directive cache_dir should be
something like this:

cache_dir /usr/local/squid/cache 100 16 256

Before starting Squid for the first time, create the cache and logs directories. To
build the cache and hashed subdirectories, you should execute the commands:

cd /usr/local/squid
mkdir cache
chown -R nobody cache
cd /usr/local/squid/bin
./squid -z

Finally, to create and change the owner of the logs directory:

cd /usr/local/squid
mkdir logs
chown nobody logs

Now Squid can be run safely for the first time, with the above RunCache
invocation. It will spawn several dnsserver processes and write its PID in the file
logs/squid.pid. Important warning or error messages can be found in the
squid.out and logs/cache.log files. Remember, if you want to shut down the
cache, you must first kill the RunCache process to avoid an immediate restart
and then type:

/usr/local/squid/bin/squid -k shutdown

Never use kill -9 to shut down the cache, because it doesn't close the object
database in such a way that it can be recovered—you'll probably lose part of it.

Restricting Access to Your Cache

In order to enable only those users who are in your organization to access your
cache, you must set up some access control lists (ACLs). Defining access lists in
Squid is quite easy; all access lists are defined with a name and are used to
define a subset of elements. You can make a subset of IP addresses, protocols,
destination URLs and even browser brands. The directive to define an ACL or
subset is:

acl

You can learn more about ACL types in the example squid.conf. In the case of
restricting access to only our users, the type needed is src. For example,
suppose you want to allow access to the cache to all browsers in the
172.16.236.0 class C, the first 32 addresses of the next class C and your PC,
172.16.237.180. You can define an ACL like this:

acl my_users src 172.16.236.0/255.255.255.0
acl my_users src\
172.16.237.1-172.16.237.32/255.255.255.255
acl my_users src\
172.16.237.180/255.255.255.255

Next, define an ACL for the rest of the addresses. This line is included in the
squid.conf example file:

acl all src 0.0.0.0/0.0.0.0

Apply these ACLs in an ordered way with the http_access directive. The syntax
is:

http_access

For example:

http_access allow my_users
http_access deny all

More than one ACL can be combined in the same http_access directive and can
be used in its negative form (i.e., preceded by !). The example shown is the
most simple use of ACLs, but more complex forms will allow connections only
in designated hours and days, allow only defined URLs or domains to be
fetched and restrict some protocols such as FTP. This powerful feature of Squid
can help you enforce and implement your security policy, whether you use
Squid in your firewall or the Squid machine is the only one allowed to cross
your firewall. Just look for examples in squid.conf.

There is also an ACL to permit setting the desired web ports you allow your
users to use. This is the Safe_ports ACL. You should uncomment this line and
add the 443 port to this ACL in order to allow the use of secure web servers
through your Squid server.

A Look at the Logs

Squid can generate huge logs of your proxy-cache usage. With this information
and the help of some scripts, we can generate complete access statistics, like
the ones generated from web servers. Squid maintains three main log files:

• cache_log includes warnings and information about the status and
operational issues of the cache.

• store_log includes information about database operations, such as inserts
of new items and releases of expired objects.

• access_log contains an entry for each object fetched from the cache and
information on how it was served. It also includes information about each
ICP query received by the cache from other servers using this server as a
neighbor.

Many utilities are available for generating statistics from the access_log file (see
Resources). Remember, it is not considered ethical to surf your access_log to
see which places your users visit. Some sites have chosen not to publish
processed statistics in any form to guard their users' privacy, which is an
important concern for all of us involved in the Internet community.

The logs grow very quickly and in a few days can eat up your remaining disk
space. To safely clean your log files, you should rotate them with the SIGUSR1
signal. A single line can be added to your crontab to begin new log files each
night:

/usr/local/squid/bin/squid -k rotate

This command will create the files access_log.0, store_log.0 and cache_log.0 and
begin logging to new empty files. Now you can safely remove these files or
process them for statistical purposes. The next time you rotate logs, files.0
will be moved to files.1 and so on. You can configure how many extensions
Squid will use for these rotations to save disk space with the logfile_rotate n
directive in the squid.conf file.

Configuring Browsers to Use Cache

To begin using your new proxy-cache server, you must first instruct your user's
browsers to fetch objects from your server instead of retrieving them directly.
In most modern web browsers, one of the configuration options is the
specification of the proxy setup. Another option is to specify a list of domains or
URL patterns which must be fetched through the proxy.

In Netscape Navigator or Communicator, you can include a proxy server and its
port for each service to be proxied. With Squid, you can use these settings for
the HTTP, Security (SSL), FTP and WAIS services, all with the same port (3128, by
default). First, select the “Manual proxy configuration” radio button and then
the “View” button to type in your settings. Figures 1 and 2 show examples of
these screens.

Figure 1. Proxy Preferences Screen

Figure 2. Manual Proxy Configuration Screen

https://secure2.linuxjournal.com/ljarchive/LJ/058/3208f1.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/058/3208f1.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/058/3208f1.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/058/3208f2.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/058/3208f2.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/058/3208f2.jpg

Another solution is the Automatic Proxy Configuration, introduced in Netscape
Navigator 3.0, that allows multiple proxy servers, backup servers and different
servers by domains. This configuration sits in a Javascript-like file that must be
retrieved from a server. Using it, you can change the topology of your cache
mesh or introduce new servers that must be treated as “No proxy for” servers.
Without telling your users to change their configurations, the new configuration
script is reloaded each time the browser is launched. MS Internet Explorer has
also supported the automatic proxy configuration feature since version 3.02.

Figure 3. Automatic Proxy Configuration Screen

An example of this kind of configuration for Netscape Navigator and
Communicator is shown in Figure 3. In this example, each time the browser is
started, it loads the file proxy.pac from the server intranet.mec.es. This file
must be returned with MIME-Type application/x-ns-proxy-autoconfig which can
be accomplished in two ways:

1. Or add the following line to your mime.types file:

 application/x-ns-proxy-autoconfig pac

1. Add the following line to your Apache srm.conf file:

 AddType application/x-ns-proxy-autoconfig pac

For the changes to take effect, you must name your proxy auto-configuration
file with the .pac extension and restart your web server. The Netscape
documentation will tell you about the syntax of the .pac file (see Resources).
Nevertheless, we'll look at a couple basic examples of how to write them.

No HTML tags should be embedded in the Javascript file, just the function
FindProxyForURL with arguments URL and host. This function should return a
single string containing DIRECT (get the object directly from the source), or
PROXY host:port (get the object through this server and port). The string can
contain more than one of these directives, separated by semicolons. For
example:

function FindProxyForURL(
{
return "PROXY proxy1.mec.es:3128;
PROXY proxy2.mec.es:80; DIRECT ";
}

will instruct the browser to use the first proxy to fetch the object. If it can't
contact the first (proxy1), then it will try the second (proxy2); in the case that
both are down, it will fetch the object from the source. This gives a fault
tolerance level to our cache system.

https://secure2.linuxjournal.com/ljarchive/LJ/058/3208f3.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/058/3208f3.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/058/3208f3.jpg

One interesting feature is using different proxies for different domains and
including support for internal servers where we don't want to use the cache.
For example:

function FindProxyForURL(
{
 if (isPlainHostName(host) || dnsDomainIs(host,
 "intranet.mec.es"))
 return "DIRECT";
 else if (shExpMatch(host, "*.com"))
 return "PROXY proxy1.mec.es:3128";
 else
 return "PROXY proxy2.mec.es:80";
}

This function will directly fetch all objects whose URL is only a word with no
dots or the Intranet server, all .COM objects from proxy1 and the rest from
proxy2.

As a tip, the .pac file can be generated “on the fly” by a CGI script, giving
different proxy configurations for different browsers, e.g., depending on the
REMOTE_HOST environment variable provided by the CGI interface. In this way,
load balancing between different networks can be achieved. Always remember
that the MIME-type returned by the CGI must be application/x-ns-proxy-

autoconfig.

Joining a Hierarchy

If your cache is to be part of a cache mesh or your proxy server is to be
connected to another proxy that will be its parent, you must use the cache_host

directive. You must include one line for each of your neighbors. The syntax for
this line is:

cache_peer

where:

• hostname is the name of your neighbor.

• type is one of parent or sibling.

• http_port is the neighbor's port from which to fetch objects.

• icp_port is the port to which ICP queries are sent. Use a value of 0 if your
neighbor does not run ICP, or 7 if your neighbor runs the UDP echo
service. This can help Squid to detect if the host is alive.

You can specify the option default to use this host as a last resort in case you
can't speak ICP with your parent cache. Another option is the weight=N to favor
a specific parent or sibling in the neighbor selection algorithm. Larger values
give higher weights.

If you have a stand-alone cache, you should not include any of these directives.
If you have one parent that runs its HTTP port on 3128 and its ICP port on 3130,
the line to include in the squid.conf file is:

cache_peer

With the cache_peer_domain directive, you can limit which neighbors are
queried for specific domains. For example:

cache_peer_domain
cache_peer_domain

will query the first cache only for the .COM and .EDU domains, and the second
for some of the European domains.

If you have only one parent cache, the overhead of the ICP protocol is
unnecessary. Since you are going to fetch all objects (HITs and MISSes) from the
parent, you can use the no_query option in the cache_peer directive to send
HTTP queries to only that cache.

Also, there are some domains you will always want to fetch directly rather than
from your neighbors. Your own domain is a good example. Fetching objects
belonging to your local web servers from a faraway cache is not efficient. In this
case, use the always_direct acl command. For example, in our organization we
use:

acl intranet dstdomain mec.es
always_direct allow intranet

to avoid getting our own objects from the national cache server.

The Cache Manager

Squid includes a simple, web-based interface called cachemgr.cgi to monitor
the cache performance and provide useful statistics, such as:

• The amount of memory being used and how it is distributed
• The number of file descriptors
• The contents of the distinct caches it maintains (objects, DNS lookups,

etc.)
• Traffic statistics with each client and neighbors
• The “Utilization” page, where you can check the percentage of HIT your

cache is registering (and thus bandwidth you are saving).

Be sure to copy the cachemgr.cgi program installed in your /usr/local/squid/bin
(or wherever you chose) to your standard CGI directory, and point your browser

to http://your.cache.host/cgi-bin/cachemgr.cgi. There, you should type your
cache host name, usually “localhost” or the name of your system, and the port
your cache is running, usually 3128, and check all the options.

Conclusions and Tips

A proxy-cache server is a necessary service for almost any organization
connected to the Internet. In this article, we have tried to show the whys and
hows to implement this technology, and a brief tutorial on Squid, the most
advanced and powerful tool for this purpose. Don't forget to read all the
comments in the example configuration file. They are complete and useful and
show a lot of features not mentioned in this article.

Perhaps in a few years, with the growth of PUSH technology and the use of
dynamic content on the Web, caching won't be a solution to the bandwidth
crisis. Today, it's the best we have.

One problem proxy caches don't solve is making certain your users configure
their browsers to use the caches. Users can always choose to bypass your
proxy server by not configuring their browsers. Some organizations have
chosen to block port 80 in their routers except for the system running the
proxy-cache server. It's a radical solution, but very effective.

Another thing you can do to improve the speed of your users' browsers is pre-
fetching the most accessed web sites from your cache. Recursive web-fetching
tools which support proxy connections can help do this task in non-peak hours,
e.g., url_get, webcopy. Launching one of these retrieval tools with the standard
output redirected to /dev/null updates the cache with fresh objects.

Resources

David Guerrero is a system and network manager for the Boletin Oficial del
Estado. He has been using Linux since the .98plNN days and now is playing with
some Alpha-Linux boxes. When not working or studying, he likes to spend time
with his love Yolanda, travel, play guitar and synths, or go out with his “colegas”.
He can be reached at david@boe.es.

Archive Index Issue Table of Contents

 Advanced search

https://secure2.linuxjournal.com/ljarchive/LJ/058/3208s1.html
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/058/toc058.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

 Advanced search

Creating a Web-based BBS, Part 2

Reuven M. Lerner

Issue #58, February 1999

Mr. Lerner continues to look at the bulletin board system, examining the code
that works with individual messages.

Last month, I demonstrated how to build a small bulletin-board system (BBS)
on the Web using Perl and a relational database. Such a bulletin board is
another useful tool for bringing people together on a web site. This month, I
will show you how to write several different programs, including ones that
create and list the current messages.

Before continuing, let's review the two tables that contain the information in
our BBS. I used SQL to define the tables, which means that while I wrote the
database using MySQL, most of these definitions should work with other
relational databases as well. The code to create these two tables is shown in
Listing 1.

Listing 1. Table Creation Code

These two tables will enable a number of tricks to be performed with threads
(i.e., message groups) and messages. Each message belongs to one thread.
Each message (and thread) is contained in a single database row includes the
author's name, her e-mail address, a subject heading and the text of the
message.

Pointers to additional information about relational databases in general or
MySQL in particular can be found in “Resources”, which also includes
information about Perl's vendor-independent database interface (DBI).

Creating a Thread with Cookies

Last month I wrote a program, list-threads.pl, to list the threads (discussion
topics) currently defined, and one to create a new thread, add-thread.pl.

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1
https://secure2.linuxjournal.com/ljarchive/LJ/058/3252l1.html

However, I didn't provide an HTML form for use with add-thread.pl, because
that form must be produced within a CGI program. The program that performs
this function is add-thread-form.pl in Listing 2 in the archive file. Listings 2
through 5 are not printed here due to space considerations, but are available
by anonymous download in the file ftp.linuxjournal.com/pub/lj/listings/
issue58/3252.tgz.

Why use a CGI program rather than a static form? To be honest, the only
reason is to provide a bit of functionality I particularly like. I order many items
on the Web, often returning to the same vendor multiple times. I dislike having
to enter my name and e-mail address every time I fill out an HTML form on the
Web. I decided to make life a bit easier for people using our bulletin board
system by automatically filling in the “name” and “email” fields with information
the user had posted in a previous transaction.

If I were to use a templating system such as Embperl or ePerl, I could use a file
that looks closer to standard HTML without burying the HTML inside of a CGI
program. For a variety of reasons, including the fact that my web-space
provider had not made mod_perl available as of this writing, I decided to use
CGI programs rather than templates.

Regardless of whether CGI programs or templates are used, inserting a value
from a previous form submission requires keeping track of state across HTTP
transactions. HTTP is a stateless protocol; that is, each connection occurs
without any memory from previous ones. How, then, can data be retrieved
from a previous form submission?

The answer is HTTP cookies, a clever hack that has become a cornerstone of
commerce and transaction on the Web. A cookie is a name,value pair,
somewhat like a variable or an entry in a hash table. The cookie is stored by the
user's browser, however, meaning that it is available across multiple
transactions.

A site can set a cookie as part of an HTTP response, with a “Set-cookie” header.
Whenever the user visits a site that previously set a cookie, it includes a
“Cookie” header in its HTTP request. Thus, the cookie's value can be used to
automatically fill in the “value” attribute of the “name” and “email” fields in the
HTML form. When the user submits the form to create a new thread, the
program sends headers that set the “name” and “email” cookies on the user's
browser. The next time the user visits the site, those values are sent as part of
the HTTP headers and can be retrieved and used within our program.

Perl's CGI.pm module allows us to easily work with cookies, using the “cookie”
method. The following code is put in the form-creation program:

https://secure2.linuxjournal.com/ljarchive/LJ/listings/058/3252.tgz
https://secure2.linuxjournal.com/ljarchive/LJ/listings/058/3252.tgz

my $email = $query->cookie(-name => "email") ||
 "";
print "<TR>\n";
print "<TD>Your e-mail address</TD>\n";
print "<TD><input type=\"text\"
size=\"50\" ";
print "value=\"$email\"
name=\"email\"></TD>\n";
print "</TR>\n\n";

which assigns $email the value of the “email” cookie or the empty string. The
empty string could be ignored, since Perl automatically assigns the empty string
to a variable the first time its value is retrieved. However, this would produce a
warning message, since the program would be using the value of an undefined
variable. It is safest to assign the empty string when possible.

The value of the text field is set to the current value of the cookie or the empty
string; that is, either the user's e-mail address or nothing at all. A similar
method is used for the user's name, so that she doesn't have to enter her name
multiple times.

The form is submitted to add-thread.pl, which we examined last month. That
program uses the elements of the submitted HTML form to create an SQL
query that inserts an appropriate row into the ATFThreads table. Because we
have defined the ID column of ATFThreads with the AUTO_INCREMENT
attribute, we can be sure every thread will have its own automatically
generated ID number that we can reference in our programs.

When the form is submitted, our CGI program creates two new cookies, one
named “email” and another named “name”. We can then retrieve the values
with CGI.pm's “cookie” method, as demonstrated above. Creating the cookies is
almost as easy as retrieving them:

my $namecookie = $query->cookie(-name => "name",
 -value => $query->param("name"),
 -expires => "+1y");
my $emailcookie = $query->cookie(-name => "email",
 -value => $query->param("email"),
 -expires => "+1y");

Once we create $namecookie and $emailcookie, we can send them to the
user's browser, thus setting the cookie values, by incorporating them into the
HTTP header:

print $query->header(-type => "text/html",
 -cookie => [$namecookie, $emailcookie]);

Since both cookies are set to expire one year (+1y) after they are created, the
user's browser should continue to send the name and e-mail address whenever
visiting the site in the future.

Working with Messages

Now that we have seen how the underlying database system will work for
threads, we need to begin working with the actual messages. Because this is a
simple system, we'll look only at posting a new message to a thread and
viewing the contents of a thread.

In many ways, posting a new message to a thread is similar to creating a new
thread. In both cases, the user's name and e-mail address are requested. In
both cases, the date and time at which the thread was created is recorded, and
the user can enter a title and a message body.

The major difference between messages and threads is that each message
must be associated with a thread. This association is used to create the illusion
that the messages are stored separately, when in fact they are all stored in the
same table (ATFMessages). Users, however, will be able to see only a single
“thread-wise slice” at a time.

Just as I used a program to create the thread-adding form, I will use a CGI
program to create the message-posting form, called post-comment-form.pl
(Listing 3 in the archive file). This form will submit its contents to post-
comment.pl (Listing 4 in the archive file).

I will ensure that each message is associated with a thread by putting a
selection list inside of the form. Each option in the selection list will be
identified internally with the ID code for the thread in question and will display
the subject line.

In order for this list to reflect the current status of the database, a database
query is done and the results are displayed in the form. The query is set by:

my $sql =
"SELECT id,subject FROM ATFThreads ORDER BY subject";

and then executed, iterating through each id,subject pair. Each pair is inserted
into an <option> tag, as we can see:

while (my @row = $sth->fetchrow)
{
print "<option value=\"$row[0]\" ";
print " selected " if ($thread_id == $row[0]);
print ">$row[1]\n";
}

The standard DBI $sth->fetchrow method is used to return the next row from
the SELECT query. When no more rows remain to be retrieved, $sth->fetchrow

returns false, which ends the while loop.

Also notice how a particular thread's subject can be selected by comparing its
$thread_id with $row[0]. $thread_id is set to the value of the query string,
which can be loosely defined as “anything following the question mark in a
URL”. The line:

my $thread_id = $query->param("keywords") || 0;

causes CGI.pm to automatically assign the parameter keywords to the value of
the query string. If the user invokes the program with http://www.lerner.co.il/
cgi-bin/post-comment-form.pl?5, then $thread_id will be assigned the value 5. If
the query string is not assigned, the value is left at 0, in which case no default
thread is selected.

Posting the Message

When the HTML form is submitted to post-message.pl (Listing 4 in the archive
file), the form elements are used to insert a new row into ATFMessages. As I
indicated above, post-message.pl is not very different from add-thread.pl,
except that it stores a thread ID number along with all the other information:

my $sql = "INSERT INTO ATFMessages ";
$sql .= "(thread,date,author,email,subject,text)";
$sql .= "VALUES ";
$sql .= "($thread_id,NOW(),$name,$email,$subject,$text)";

The variable values can be inserted without surrounding them by quotes,
because the standard $dbh->quote method was used. I discovered this method
only recently and continue to be amazed that I was ever able to survive without
it. Simultaneously, the form elements are retrieved and quoted appropriately in
the following lines of code:

my $name = $dbh->quote($query->param("name"));
my $email = $dbh->quote($query->param("email"));
my $thread_id = $dbh->quote($query->param
("thread"));
my $subject = $dbh->quote($query->param
("subject"));
my $text = $dbh->quote($query->param("text"));

Once this is done, the above SQL query will INSERT a new row. We tell the user
that the new message has been added and produce a menu bar with a number
of options.

Believe it or not, these two short programs are all that is needed to insert a
message into the database and thus into our BBS.

Viewing a Thread

At this point, the functionality is close to complete. All that remains to be done
is to create view-thread.pl (Listing 5 in the archive file), which allows us to look
at the current contents of a thread.

For this program to work, a single argument must be passed in the query string
to identify the thread. To retrieve this value, use the keywords HTML form
element that CGI.pm creates:

my $thread_id = $query->param("keywords");

Once $thread_id is assigned, I can retrieve the appropriate information from
the tables about that thread. Indeed, two separate queries are done: one from
ATFThreads and a second from ATFMessages. (I could have combined the
queries into a single large SELECT statement, but I chose to keep them
separate.)

Early on, I decided to print the date and time of the user's posting along with
the text of the posting. Given the DATETIME data type, how can we retrieve the
date and time in an intelligent way? MySQL provides a DATE_FORMAT function
which takes the value from a column and writes the contents using a specified
format.

To make life easier, I actually retrieve the same “date” column twice, once for
the date and again for the time. This allows literal characters to be inserted
between the date and time without having to worry about possible
misinterpretation:

$sql = "SELECT id, DATE_FORMAT(date,
 \"%W, %d %b %Y\"), ";
$sql .= "DATE_FORMAT(date, \"%h:%i %p\"), ";
$sql .= "author, email, subject, text FROM ATFMessages ";
$sql .= "WHERE thread = $thread_id ORDER BY date desc";

DATE_FORMAT takes two arguments: the name of the column to retrieve and a
set of codes (in the style of C's printf statement) indicating the values to use.

Once this query is executed, the code iterates through the results, printing the
messages as they come—from newest to oldest. They will come in that order
because of the ORDER BY clause in the SELECT statement. Allowing the
database to do our dirty work for us means we can print all of the messages in
a thread with just the following short loop:

while (my @row = $sth->fetchrow)
{
my ($id, $date, $time, $author, $email, $subject,
 $text) = @row;
print "$subject, ";
print "by $author ";

print "on $date at $time</P*gt;\n";
print "<blockquote>$text</blockquote>\n\n";
}

Summary

The basic BBS software is now finished. It can create threads, add a message to
a thread and view the messages within a thread. If nothing else, this project
shows how powerful a set of database tables can be when paired with some
CGI programs.

Perhaps this system is too basic; it is lacking some functions that any good
bulletin board (or any good web application) should handle. For instance, it
would be nice to include the ability to search through the posted messages for
a text string or regular expression to find messages relevant to a particular
topic.

It would also be useful to provide some administrative functions, unavailable to
the public at large, for handling things at a relatively high level. For example, we
might want to reserve the ability to delete messages that are offensive or
unrelated to the topic. We might even want to give this ability to certain other
users, giving them “deputy moderator” status.

Next month, we will see how to provide these functions by adding just one or
two new CGI programs. Meanwhile, you can see these programs in action at
http://www.lerner.co.il/atf/, where the “At the Forge” BBS is already in use.

Resources

Reuven M. Lerner is an Internet and Web consultant living in Haifa, Israel, who
has been using the Web since early 1993. In his spare time, he cooks, reads and
volunteers with educational projects in his community. You can reach him at
reuven@netvision.net.il.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

https://secure2.linuxjournal.com/ljarchive/LJ/058/3252s1.html
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/058/toc058.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

Focus on Software

David A. Bandel

Issue #58, February 1999

gtkcookie, guitar, gentoo and more.

Welcome to the second installment of my look at software packages worth
downloading. I always find something good on the Internet. A lot of developers
have been quite busy and are turning out some excellent software. The hot
development library seems to be GTK+, and with so many novice Linux users
who are not command-line oriented, it is a good thing.

gtkcookie:

http://www.110.net/~pq1036/

Do a lot of web surfing? Notice how many sites want to leave little droppings
called “cookies” on your system? So many, in fact, I added a hard drive to store
them all. Okay, I actually needed more space to download and compile
programs like this one. It is a slick, easy way to view, edit and delete cookies.
Frankly, I would rather eat them. Required libraries are gtk-1.0.6, Xi, Xext, X11,
m and glibc.

guitar:

http://disq.bir.net.tr/guitar/

guitar is another of those utilities you love to have. I like this wrapper for tar
despite the fact that I am quite comfortable on a command line. guitar lets you
see what is inside a tar or gzipped tar file, read the text files inside, and extract
the one you want. It also lets you create a directory for storing the files. This
version does not create tar files, but I'll bet future versions will. Required
libraries are gtk-1.0.6, Xi, Xext, X11, m and glibc.

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

gentoo:

http://www.obsession.se/gentoo/

gentoo is yet another file manager. It looks simple, but hides a lot of
complexity. It will copy, move, and do other things as well. A three-row button
bar on the bottom can be configured as you see fit. In fact, the most
complicated part of this program seems to be figuring out how to fill up all the
empty buttons rather then actually doing it. The configuration box takes a cue
from other recent systems that use tabs across the top of the box to change to
various configuration pages. Once it is configured (the default configuration is
actually quite good), it is easy to use. Required libraries are gtk-1.0.6, Xext, X11,
m and glibc.

slashes.pl:

http://members.xoom.com/alexsh/slashes/

slashes.pl is a small Perl script that all the “dotheads” in the audience will like. It
is a way to keep the Slashdot.org headlines on your screen while having your
web browser open to it all day long, just so you can press reload. This program
allows you to see the headlines whenever you wish, just in case a news article
appears that you would like to read. While I had trouble with the “Read” button
even after setting the line to point to my Netscape binary (it would crash), I
suspect I just need to reread the script and find out what I am doing wrong for
my setup. Required libraries are Perl, gtk-1.0.6 and the libgtk-perl module.

The Gaby Address Book of Yesterday:

http://www.multimania.com/fpeters/gaby/

Gaby is a deceptively simple address book. It carries all the latest fields for
those needing to keep up with more than just phone and fax numbers. Space is
reserved for URL, e-mail address and more. What it lacks is a way to connect to
a database engine like MySQL. The flat-file method works well for individuals,
but is not practical for a site where multiple users may have years of contacts
listed. This one is great for single users and has the potential for larger sites if it
can connect to a database engine. Required libraries are gtk-1.0.6, Xext, X11, m
and glibc.

The Amazing Anagram Thingie:

http://www.vis.colostat.edu/~scriven/anagrammer.php3/

This is a command line “game” to help you with those pesky anagram puzzles—
very fast, very simple and easy to use. A phrase of any length will have this one
scrolling anagram solutions off the screen for a long time. It is a great game for
those puzzled by anagrams. Required library is glibc.

Ministry of Truth:

http://tomato.nvgc.vt.edu/~hroberts/mot/

This particular package has been out for a few months, has earned a place in
my own system and will soon occupy an internal web site where I regularly
work. Sometimes keeping track of jobs is difficult. This program makes it a
breeze. It can track most users, software, equipment, jobs and people
associated with them. While it requires MySQL, it handles everything once
MySQL is installed and configured. For those requiring assistance, a (very low
volume) user mail list has been set up. Required libraries are Apache with the
php3 module compiled with MySQL, and MySQL.

Still lots more good packages out there. See you next month.

David A. Bandel (dbandel@ix.netcom.com) is a Computer Network Consultant
specializing in Linux. When he's not working, he can be found hacking his own
system or enjoying the view of Seattle from an airplane.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/058/toc058.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

Letters to the Editor

Various

Issue #58, February 1999

Readers sound off.

Applixware 4.4.1

I recently purchased Applixware 4.4.1. My reason for purchasing it was so that I
could interoperate with co-workers who run MS Office. Applixware has the best
MS Office import filters I have seen, but they are not quite perfect. I found that
while text and tables seem to import well, figures are another story. So far, I
have only tried importing a few MS Word 7.0 documents, but in general, the
figures fail to convert. I recognize the complexity of the conversion task, and I
applaud Applix for doing as well as it does. I hope the filters continue to
mature, so that I can finally dump Windows 95 off my machine and use Linux
exclusively.

—Steve Falco sfalco@worldnet.att.net

Erratum in LJ February 1998

I know that it is late to correct an erratum in the February issue; nevertheless, I
think Linux Journal is a magazine to read and save for later use, so even such a
late correction could be of some benefit.

The error is in Listing 5 of the article “Attaching Files to Forms”, in the column
“At the Forge” on page 93. This listing should contain the following line between
lines 2 and 3:

no strict "refs";

If this line is not present, the Perl interpreter will abort the script as soon as the
variable reference $userfile is used for write. The uploaded file will be created
but not written, i.e., it will have zero length.

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

—Aldo Mozzi medico.red@interbusiness.it

Answer to User's Question

In the November LJ, “Best of Technical Support” had a question regarding
installing Linux (specifically X) on an IBM Thinkpad 365. There is an excellent
article regarding this in Linux Gazette, http://www.ssc.com/lg/issue21/
notebook.html.

I was able to get X working on Thinkpad using this guide, and the author, Sam
Trenholme, was extremely helpful in getting me over a few problems when I
contacted him via e-mail.

—Nate Dutra nate@the-wall.net

Eiffel, Design by Contract

Your fine web site, http://www.linuxresources.com is usually the first thing I
check on weekdays when I boot up. You have helped me greatly in learning
about Linux.

Thank you very much for reporting on Dr. Meyer, Eiffel and Design by Contract.
Here are three open-source Eiffel and Design by Contract resources:

SmallEiffel, the official GNU Eiffel: http://www.loria.fr/projets/SmallEiffel/

TOM, a new GPL/LGPL OO language with multiple inheritance and Design by
Contract traits: http://gerbil.org/tom/

A page I edit: http://www.newhoo.com/Computers/Programming_Languages/
Eiffel/

—Jerry Fass fass@pitnet.net

Linux Installation and the Open Source Process

Last week I decided to totally change over to Linux after reading the latest
horror story about Windows. Apparently, people connected to the Internet on
W-95-98 can be snooped on simply by typing their IP number and a few
backslashes. Suddenly, their whole system appears in the other person's MS
Explorer window.

So here I am, scurrying to get a faster motherboard and a bigger hard drive. I
am all enthusiastic about the new KDE and GNOME projects, yet when I read
the installation manuals—S.u.S.E. or Red Hat—I am horrified by how much

totally new and alien system configuration is needed for a new Linux user. The
problem is exemplified by the marvelous advertising flyer sent out by S.u.S.E.
for its 5.2 release. It seduces the user with a DOS-Windows box packed with a
lifetime accumulation of precious utilities. It implies that UNIX clones for these
treasures (and more) effortlessly await on the new Linux user's desktop. The
actual case is that this happens only after endless installations and
configurations.

The open-source concept has been much in the news lately, yet it seems that
these installation processes are the one place where the open-source
environment is not used to evolve solutions to these problems. Rather, it is the
special province of the private bundling companies. Regardless of whether they
put their products in the public domain, they are not developed in the open.
People seem to believe that the greed of these companies will produce the
fastest results, but I have not seen any miracles yet. Perhaps there are
installation projects underway in the open-source community. If so, nothing
could be more critical to the advancement of Linux.

We often hear people crowing in LJ that some huge corporation or the defense
department is now more efficient because of Linux. I am much more impressed
by ease of use by the ordinary person. If LJ were to make open-source
installation projects a continuing focus of articles, it could do an incredible
service to the evolution and spread of Linux.

—David Briars dbriars@sover.net

Easier installation seems to be what everyone is asking for these days. Red Hat
is working on it with LinuxConf, and Caldera with COAS (see article in this issue)
—Editor

Happy Hacking Keyboard Price

The correct price for the Happy Hacking Keyboard at the time of the article was
$159, not $189. Today I cut the price again from $159 to $139 as a standard
price. Please let your readers know.

—Ted Abe, PFU America, Inc. tetsu@pfuca.com

BTS Correction

In the November 1998 “Best of Technical Support”, weird things have been
happening to Eric Benoit's system. su misbehaves, as do man and less. Scott
Maxwell thinks it may be terminal options, but the answer lies with /dev/tty. My
bet is that somehow, something has changed the permissions on it and it is no
longer readable. Just type:

chmod u+rw /dev/tty

and all will be well. You should probably make sure it is writable while you are
at it.

I guess most programs that decide to access /dev/tty to talk to a real user never
consider the possibility that they do not have permission to do so.

In general, processes inherit an open file handle to /dev/tty from their parent as
stdin, stdout and stderr. The process that opens them in the first place is login
which is running as root, so it has no problems. Either that or the top-level
program opens a particular real or virtual terminal using a device name which
will have the permission bits set differently.

—Adrian Pronk apronk@sangacorp.com

Linux Journal and Red Hat

I have been a subscriber for about one year and I really like the articles. I am
happy to see that Linux is stealing the spotlight from Microsoft.

I first got into Linux in 1996 after working with the HP-UX workstation on a job
and realizing that you can connect to the Net with any OS, not just Macintosh,
Windows 95 or Windows 3.x.

Red Hat is a good distribution and I have been running 5.0 for a year without
any problems. I plan to get 5.2 soon.

For all you newbies, I recommend Linux for Dummies, UNIX for Dummies and
Teach Yourself Linux in 24 Hours. These books include the operating system
and some applications. I would recommend Red Hat to anyone.

—Fred Nance fnance@eclaim.com

VFS Error Messages

Regarding December's “Best of Technical Support”, “VFS Error Messages”:
another reason for the failure to mount the root partition during boot is that
the root file system was compiled as a module when the kernel was built,
rather than compiled into the kernel itself. When the root file system is first
mounted during the boot process, no modules are loaded, and modules cannot
be loaded until the root file system is mounted. If the file system driver is a
module, then the kernel cannot mount it—so it panics.

—Rob Singleton single@nortelnetworks.com

Real Life Business Story

As a system integration tool, Linux has allowed us to prepare custom network
file servers which can do the following:

• Provide complete web-server services (Apache).
• Provide Internet connectivity for many users on the local LAN (IP-

Masquerade).
• Provide file and printer services for Windows/DOS users (Samba).
• Provide file and printer services for Netware users (MARS_NWE, NCPFS).
• Provide complete internal/external e-mail services (Sendmail).
• Provide inexpensive terminals in both graphical and text-based platforms

with the X Window System which can be connected in a variety of ways
(Ethernet, serial, etc.).

• Provide complete point-to-point protocol (PPP) implementation for
routing and other remote-oriented operations.

• Provide a fully scalable system that can grow with the company.

All of the above have been thoroughly tested and implemented. We could not
be happier with the performance and continued development of this OS.

—Larry Rivera larrydog@coqui.net

Review of Learning the Bash Shell

In the review of Learning the Bash Shell, Second Edition (December 1998), Bob
van der Poel points out that the book examples available by FTP are from the
first edition and that the correct ones might be available by the time the review
was printed. That should now be true, as I asked the publisher to correct this
mistake in October.

—Cameron Newham, Author cam@sspl.demon.co.uk

Re: CIDR

In the December issue, there is a misprint in David A. Bandel's article “CIDR: A
Prescription for Shortness of Address Space”. On page 26, under the CIDR
heading, second paragraph, it states:

For a Class C address, this default subnet is 24 bytes
long, so putting all ones in the first 24 bytes and zeroes
in the rest, we have 255.255.255.0.

I think this should instead read 24 bits, rather than bytes, since each octet is
composed of 8 bits, which gives 4 total bytes. Just wanted to bring this to your
attention. Great article!

—Bob Cummings bob@cter.eng.uab.edu

Mea culpa—you are 100% correct. Thank you for pointing out that little lapse of
attention on my part. Guess I need to re-read everything thrice, because I read
it twice and missed it both times. —dbandel@ix.netcom.com

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/058/toc058.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

More Letters to the Editor

These letters were not printed in the magazine and appear here
unedited.

BTS: Re: Netscape Mail article Dec 1998

I am replying about the article in the December 1998 issue of Linux
Journal, in Best of Technical Support, about Bill's question on Netscape
Mail, Demon Internet and Red Hat 5.0:

Demon Internet are unusual as an ISP in terms of providing a full SMTP
feed to you, treating you like a “real” Internet host, rather than relying on
POP3. It is only recently that they have started providing a POP3 service
for collection of mail.

The reason you are getting some mail in Netscape and some in Sendmail
is that Demon open an SMTP socket to you as soon as you log on, and
start sending mail to you. If you also connect via POP3, some will come
down via each method.

The solution for Red Hat 5.0 is to turn off Sendmail, using the command
'chkconfig sendmail off' - this will prevent Sendmail starting, thus
preventing you from having anything listening for an SMTP connection,
preventing Demon from connecting to you. All your mail will stay on the
Demon side, waiting for you to pick it up with your POP3 client.

Sorry for being so wordy. Please feel free to edit this down a bit if you
want to publish any of it.

Hope this helps,
—Peter Denison
peterd@pnd-pc.demon.co.uk

Re: Netscape Mail

Peter Struijk writes in LJ:
Sendmail is most likely sending out mail with your
full host name. When a recipient replies to a
message you sent from elm, the reply is sent
directly to your computer and not to your mailbox
at your ISP.

Peter, you have inadvertently misled Bill here. Demon Internet, a large
UK service provider, have an uncommon setup for email.

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

Your actual host name 'mirrim.demon.co.uk' is the same as in your email
address. Demon users have an unlimited number of email address in the
form <user>@<hostname>.demon.co.uk. Demon set the MX records for
the dial-in hosts to point the their own mail servers, so mail is never
delivered directly from outside hosts to the clients' machine by SMTP.

However, Demon _do_ deliver mail by SMTP to client machines. This is
their preferred method of mail delivery, and their 'Turnpike' software for
Windows accepts mail in this way, and maintains multiple mailboxes.

Demon have recently started to offer an additional service, where mail
for dialup hosts can be fetched by POP3 instead of by SMTP. Naturally this
conflicts with the SMTP delivery, so some messages are delivered by
each method. If you intend to use POP3 for mail delivery, then you should
disable the SMTP daemon on your machine.

A simple way to do this is on a Red Hat box is to type (as root of course):

 /sbin/chkconfig --del sendmail

It's best to set up sendmail so that it will forward mail to Demon's mail
hosts if it can't deliver it directly. That way, they can keep trying for you,
even after you've disconnected.

I can't tell you how, though, because I don't use sendmail - I use Exim (
http://www.exim.org/) because it's more secure, faster and easier to
configure.

I would suggest using a local mail service, though, and allowing Demon
to deliver mail by SMTP. Then you can 'POP' it from your own machine.
That way, you can easily use more than one of your unlimited mail
addresses. Even if it's only ever going to be used by yourself, you might
find it useful to have multiple addresses going into different mailboxes.

Demon sometimes takes a minute or two to deliver mail after you dial up.
If you intend to dial up just for the purpose of fetching mail, and not
doing anything else at all, then this might annoy you.

In this case, you could use a modified version of the 'fetchmail' POP
client, which uses Demon's POP3 extensions to find out the intended
recipient of the mail and deliver it to the right place. The patch to
fetchmail ... isn't on my web site ATM for some reason. I'll mail it to you if
you ask for it, and put it up for FTP somewhere.

Feel free to get in touch if you have any problems with it, or if you want
further clarification.
—David Woodhouse
David.Woodhouse@mvhi.com

Midnight Commander

As an utter Linux newbie, it took me a month to find MC (http://
www.gnome.org/mc/). Now that it's too late of course there it is on on my
Red Hat distribution; for all I know, all I had to do was type MC....

Whatever, (1.) I wanted to thank from the bottom of my heart the
creators of MC; I just can't express the feeling of freedom and release a
little tree and file display produces; all your karmas are immensely
enhanced! (2.) Distributions really ought to consider emphasizing this
thing more. At this moment, Linux is poised for greatness, or at least to
significantly annoy Bill Gates, and providing this kind of obvious file/
directory support to new single-machine users like myself is an obvious
way to encourage Linux use and distribution.

But again: thank you, MC creators.
—James G. Owen
71121.625@compuserve.com

Subnetting Table

The article about CIDR in issue 56 by David A. Bandel was very
interesting. Sometime ago I created a subnetting table that illustrates
these concepts.

It's available as PDF at

http://www.access.ch/ml/software/subnetting/subnetting-table.pdf

You might want to publish the link for your readers...
—Marc Liyanage
webmaster2@access.ch

Funny attitude

Please accept this letter as it is, and not as an insult to your magazine.

Reading a couple of issues, I have noticed a weird attitude of the people
writing articles. Everybody is against Microsoft, but in a very childish
manner. Of course, I agree that Microsoft products are not the best, they
are not even decent, but expressions like “In the continuing battle with
the Evil Empire, I have recently reduced my dependence on ”Them“ blah-
blah”(issue 47 page 64) or the Fry Electronics display window (issue 54
same page). Let's get serious, people. It's not the way you can fight
software monopoly. Serious people don't bark against Microsoft, serious
people (Linus, Alan and many more) write good and free software.
Serious people don't publish articles about “Yes! In Zair we can make a
full elephant migration survey using Linux!”. No. Serious things like that
is made using more powerful software, powerful than Linux. Linux is a
good OS, free, but it's still at its beginning. I've just got pissed off of that
“Linux propaganda” many magazines are doing. You know, that
propaganda makes Linus look like Lenin in Linnuxism (communism). I
hate these extremist opinions, and please be more careful in the future.

Linux Journal is still one of the best Linux magazines and I hope it will
remain so. Above Linux (although it's free and makes a lot of people
earning lots of money paying nothing instead) there is democracy and
the freedom of choice.

I am sure this will not be published, but I am satisfied that what I had to
speak was heard where it was supposed to.
—Stefan Laudat
stefan@art.ro

IDG/LinuxWorld Expo alienates speakers?

The following is a quote from Alan Cox's Dec. 11th. dairy:

(http://www.linux.org.uk/diary) entry:
I also had some non fun mail from the LinuxWorld
people (ie IDG) when I asked them to clarify
arrangements for speakers expenses. Answer “we
wont be paying any”. Thats one less speaker. I
know three other speakers who will also probably
be dropping out and no doubt more will follow
when they discover this.

Now in my case sure I can probably extract the
money from someone but there is a principle at
stake. Many Linux hackers are in it for fun and
don't get paid for it. A conference whose financial
greed extends to excluding all the non commercial
Linux hackers is wrong. It may be how those
dreadful non technical all gloss networking/
windows shows run but its not how a technical
conference should be run. It's not how other Linux
events are run and its not how Usenix is run.

I may be a member of the small club of Linux
people who can get funding to attend and speak
at such an event but I want no part in it.

I am one of the organizers of the Atlanta Linux showcase and have been
since it was started over three years ago. I think things like this are an
important distinction between a Linux trade show whose sole purpose
seems to be to take advantage of the Linux community in order to
generate trade show revenue and ALS, which is as close as we can get to
an Open Source type of Linux trade show. ALS is put on by a not-for-profit
corporation made up of volunteers from the Atlanta Linux Enthusiasts
user group and we have always covered travel expenses for people who
were willing to take time out of their busy schedules to come and speak
at ALS.
I think it is important for the Linux community to realize the possible
consequences that can happen when pure commercial interests intersect
with the Open Source community. Some times becoming the hot press
topic and being seen as the next Microsoft competitor may not always
have pleasant results.

—Steven A. DuChene
sad@ale.org

ATI video cards

Some time ago I bought an ATI all-in-wonder. This card was support by
Xfree86 on the video side but not the TV tuner side. When someone, I
can't remember who, tried to enlist ATI for assistance to write a driver for
the tuner, they declined and have declined in spite of a large assault
from many Linux users.

All that said I was distressed when I read in the December 1998 issue
#56 in the 'Best of Technical Support' in a reply to the email entitled
'Networking' LJ printing a reply which plugged ATI products.

If vendors do not support Linux then the Linux community should not
support same.

As far as I know ATI is one of these vendors.

Thanks,
—Gene Imes
gene@ozob.net

Linux on Macintosh

After years of using Wintel equipment and successfully installing Red Hat
Linux on a 90MHz Pentium with 32MB of RAM and a 1.2 Gigabyte disk I
purchased an Apple Macintosh G3. I use Macs at work and I'm familiar
with them. It wasn't until I started using a Mac exclusively that I realized
the I much preferred the elegance of the interface and the integration of
the software from third parties.

I have an interest in learning UNIX and the obvious course of action was
to learn Linux, And even though I have a Mac now I still have a great
interest in learning Linux. Having heard a little about Linux on Mac
equipment I decided to look for myself to see what was available.

When I visited your web site and saw that the January issue would have
an article regarding Linux on a Mac. I was really excited and could hardly
wait for it to arrive in the mail.

That day has arrived.

I am very disappointed.

I am currently preparing to install LinuxPPC on my PowerMac G3. With a 4
Gigabyte disk I can partition it and run both the Mac OS and Linux
peacefully and actually communicate between the two partitions. I would
like to direct your attention to http://www.linuxppc.org. At that site you
will find much more up-to -date information regarding Linux and
Macintosh.

I would also like to point out MKLinux,to my understanding, was
developed by Apple for the 68k chip. Apple is no longer developing
MKLinux.

A new distribution is in development called Yellow Dog.

After I found all the information available regarding Linux on Macs I
started looking though back issues of Linux Journal to see if there was
anything I had missed on the subject. Unfortunately there wasn't.

For inside, blood and guts, info on Apple Macintosh architecture and
Motorola chip architecture I would like to direct you to the Inside
Macintosh series of books. They are published by Addison Wesley with
information provided by Apple. The series has been available for at least
four years and is regularly updated. Motorola has information on their
chip architecture in the Motorola user's manuals.
—Brian Vawter
bvawter@psnw.com

Sorry you were disappointed in Alan's article but
as you pointed out, it was meant only as a
discussion of porting the kernel not a HOWTO.
Linux Journal has had other articles on Linux and
the Macintosh: “How to Build a Mac” in issue 19,
“MkLinux: Linux Comes to the Power Macintosh” in
issue 31, “Linux? On the Macintosh? With Mach?”
in issue 37, and “Netatalk, Linux and the
Macintosh” in issue 45. We also have one
promised but not yet delivered for future
publication. —Editor

Stone Age hardware in PC

In “Linux for Macintosh 68K Port”, Alan Cox complains about the Mac's
Stone Age hardware design. The PC also has a little Stone Age hardware.

The Intel 8259 interrupt controller was introduced as a peripheral for the
Intel 8080 eight-bit microprocessor. The 8259A added a mode for
compatibility with the 8088 and 8086 processors.

The 8259A has a mode where the interrupt vector is returned as three
bytes. This mode is not used with x86 processors, so I do not know if
modern 8259A emulations include it.

The three-byte mode emits an 8080 machine-language CALL instruction.
The 8080 executes this instruction to get to the interrupt service routine.
—Peter Traneus Anderson
peteand@vitech.com

Choosing between VI and World Domination

One again we have had the survey about favourite editors and once
again VI emerged victor and if I judge by what happened last year you
are receiving loads of e-mail of VI partisans happy of the outcome.

But. It is not to an old statician like me you will teach him about sample
bias and about the problem of spontaneous votes who tend to over
represent the most vocal and activist group.

LJ readership is only a tiny fraction of Linux population and tends to be
more extremist and Unixically correct than your average Linuxer.

More importantly you are not asking to the people who saw Unix and
hated it. Each time I meet one of them I ask him. So far the first thing
they mentioned has always been the same: “Unix's awful editor”. They
were not speaking about Emacs :-).

When did Unix reach world domination? NEVER. The crown went directly
from mainframes to DOS. And blindly following the traditions of a system
who never won is a sure way to defeat. A system who got an awful
reputation and lost many potential followers in no small measure thanks
to VI.

Because Linux will reach world domination the day people like lawyers or
writers will use it. And lawyers will NEVER use VI.

So, VI is the editor you will find in every UNIX? Linux will crush
proprietary Unixes, the sooner, the better. Who cares about their editor?

It is time we begin designing things the Linux way and stop caring about
Unix.
—Jean Francois Martinez
jfm2@club-internet.fr

Corel WP for Linux.. Very nice :-)

Just like to tell you how easy it was to install, configure and run WP for
Linux. I have worked with Linux for four years and this was one of the
easiest apps I have ever installed.

So far I am very impressed.. I will forward this e-mail along to Linux
Journal..

If you are looking for system config feed back..

System:
FIC 2013 Mother board
AMD K6 350
128 MB ram
6 GB HDD

AGP 8 MB Matrox millennium II
17" AOC @ 1024 x 768

Kernel 2.0.36
Xwindows Xfree86 3.3.3

I hope to see more of your apps ported to Linux in the future

We are also selling Linux gaming computers and are considering an
Office computer system.
—Doug
fixxxer@accessgate.net

Macsyma - yet another company that ported its product to Linux

Your review on Mathematica 3.0 for Linux by Patrick Galbraith (LJ,
December 1998, page 75) gave me an idea that one could mention
another big player from the Computer Algebra Software field, namely
Macsyma, that just recently ported its product on Linux. The third one of
the Big 3 from this field (MAPLE) has been available for quite some time.

You can find more about Macsyma, and its Linux version, at http://
www.macsyma.com/

Let me just add that I find Macsyma to be extremely good. I suggested to
some people at Macsyma last year to make it available for Linux users (I
am not pretending that my suggestion was either first or the only one).
My argument to them was that I see some similarity between Linux and
Macsyma, that I believe that people using one of them will easily get to
like the other one. In particular, I mentioned neatness, precision and “a
mathematical carefulness” of Macsyma, together with its affordability.
Namely, the price of Macsyma for Linux is around $200, versus $1,495
(according to the above mentioned LJ article). I did not check the price
for Maple, but am pretty much sure that it is over $600. On the other
side, Macsyma scored far better on some comprehensive independent
tests (see the Macsyma's home page for the details), and it seems to be
easier to learn for beginners.

Let me use this opportunity to add another idea. I have been subscribed
to LJ for about a year, and using Linux (Slackware 3.0) for close to 2
years. I enjoy both, Linux and the LJ, very much. Many articles are over
my head, but many are just right; and I read everything anyway. This
particular January 1999 issue has so many articles that I found to be
really great. I filled in a little feedback to 2-3 of them just a few minutes
ago, but then got kind of tired of typing the same thing over and over
again (I apologize to the other authors for my laziness). So here is my
idea: Will it be possible to make link where one could pick several articles
at once to send his feedback?

Thank you very much for your kind consideration, and for the great job
that LJ has been doing.

—Milan Lukic
lukic@vulcan.acs.uwosh.edu

When Linux Journal Interactive gets up and going
(soon, we hope). The response forms will go away
—instead there will be discussion groups for each
article. This will still be done on an article by
article basis though, so I'll submit your idea for an
“in general” group to our tech department. —
Editor

MkLinux,LinuxPPC,Turbo and Debian

I realize the subject of my e-mail might seem weird so here is a
clarification. The question: How many versions of Linux are there for the
Power PC based Macs? The answer: 4, The subject of this e-mail (as far as
I know).

This is not meant as a mean type of letter I just want you to know. The
computer industry as a whole seems to be at the threshold of a new rule
with Microsoft being dumped left and right. Where are these people
going, Linux? This is a great opportunity for opening of standards and
more freedom. As a Macintosh user I have noticed a big turn around in
peoples perception of Apple, there machines, and there OS (I am a Mac
Rep at CompUSA). I realize that most people who use Linux are using it
on a Wintel style machine but as we all know, with Linux, this doesn't
matter. Linux is an OS that really doesn't care about the machine that it
is on. With LinuxPPC R5 able to run on iMac's ,and any PowerPC for that
matter, also there is info out on the web that suggests that Apple will
bundle a version of Linux on some of there machines. Would you please
do some more articles that have some type of Mac connection so more
Mac users can realize the power of Linux. Maybe an article a month and
or a Special Issue that has info for Mac people so they can start using
Linux also. For instance which of the 4 listed distributions should people
use for there need? Why should they use Linux? Where can they locate
software they will need?

I personally have a tri-boot of MkLinux DR3, LinuxPPC R4, and Mac OS
8.5.1. I have been using Linux for about 6 months and have gone through
most of the newbie problems and still go through them. I will probably
get a subscription to your magazine because I have been impressed by
the depth of knowledge your articles present every month. Thanks for
reading and for all the new and old Mac based Linux users we hope to
see a new column soon.
—Chad J. Adelman
casl4419@mindspring.com

BTS

On page 61 of the Jan99 issue of Linux Journal, you raise the question of
how to allow an ordinary user permission to shutdown the system, and
the reply is that the user must use Alt-Ctrl-Del.

I have learned an alternate solution (I cannot claim credit for figuring out
this one myself, though). If you set the UID bit on /sbin/shutdown, then
ANY user can use /sbin/shutdown. That's the catch—it allows any user at
all permission to execute /sbin/shutdown. As root, type: chmod 4766 /
sbin/shutdown

This also allows remote shutdowns: rsh machinename /sbin/shutdown -h
now (or -r now or whatever options you want).
—Capt Christopher A. Bohn
cbohn@afit.af.mil

Re: BTS Shutting Down

In the Jan. 1999 Best of Technical Support in the Linux Journal, Thomas
Okon asked about a utility to allow a user to shutdown the system
without having to login as root. The solution is at sunsite as ftp://
sunsite.unc.edu/pub/Linux/system/admin/su/usershutdown-1.1.tar.gz
—Andy Holder
aholder@bellsouth.net

BTS: GNU wget for updating web site

Re. the question “Updating Web Site” in the Jan 1999 Linux Journal, p. 61
...

Haven't tried the mirror package - might be good, but you can also use
GNU wget (prep.ai.mit.edu). Here is the script I use to keep the University
of Maryland LUG's Slackware mirror up-to-date. “Crude but effective”.
—Judah Milgram
milgram@eng.umd.edu

Consistency vital to growth of Linux

When designing systems, or writing software, consistency, not perfection
is the goal. Perfection can not be achieved, and too much time is spent
trying to achieve it. The next best alternative is consistency. With
consistency, even poor designs can be used. Examine for a moment the
most popular OS for PC's. When I first started using it, I disliked it. I still
dislike it, but have observed its growth. It did not grow because it is
great, it didn't even grow because it is good. It grew because it is
consistent (and of course marketing - people love someone that can
make used motor oil sound like a health drink).

I first tried Linux after I left my personal computer (S-100 CP/M) behind
and bought my first PC. It came with with a crashing OS with a defective
windowing system, but I could edit code with it and if I didn't make the
names of the files too long, I could move files back and forth to work.

One day, while at the computer store I noticed a CD with a distribution of
Linux. I am happy to say I bought it.

https://secure2.linuxjournal.com/ljarchive/LJ/058/milgram.html

I installed Linux and used LILO to dual boot. I liked Linux because it was
very close to the OS I used at work. I found myself using the crash OS
less (I needed it to run FrameMaker) until, finally I had to upgrade to
undertake a challenging project, writing a MUMPS to C++ translator for a
program that was over 0.5M lines of code. I needed a system that was
dependable, so I upgraded to a 486, 128M of memory, 8GB of disk, a dat
tape drive, and the latest Linux distribution I could find.

To test the system, I ported the tools I used at work to Linux by making a
simple change to the Makefile. I ran an analysis on the code that takes
about one month to complete on a SPARC 10 server. It took about a
month on my 486 PC running Linux (try that with the popular OS).

Why you may ask, is such a robust OS not as popular as the other OS
running on PC's?

If consistency is maintained, it will be. I have quietly been using Linux
and watching its growth. The only real threat to the growth of Linux is if
the distributors want to play the games the hardware vendors and OS
vendors play, by trying to make sure software developed on their system
will not run on any other system (a.k.a. locking the client in). As a
developer, I continually run my code on at least two platforms to make
sure it is portable. I usually try for at least three. OK so portability is
almost as important as consistency, but portability requires consistency
and standardization.

I have run at least three different distributions of Linux on my computers.
Currently, I am running the same distribution on all three, including my
laptop. I purchase a Linux distribution on CD instead of getting it off the
internet so I can get the value added. In my case the biggest value added
is the support (after all, I am a designer/developer, not a system
administrator).

Recently, I have read rumblings about distributors thinking about
providing software that will not run on other distributions. To do so would
be a fatal mistake for it could do something that the popular OS vendor
can not do, by dividing the Linux community. I wonder if that is the
reason a major hardware vendor bought into a Linux distributor that
provides multi-platform support.
—Robert Witkop
rmwitkop@cts.com

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/058/toc058.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

Software Libre and Commercial Viability

Alessandro Rubini

Issue #58, February 1999

Mr. Rubini gives us his opinion of the Open Source movement.

Fortunately, Linus' project of world domination is going to come true fairly
soon. The trend toward this goal can be verified by checking how the press is
behaving towards GNU/Linux solutions, looking at how several educational
entities are going to introduce free software in the schools and verifying Linux's
usual technical excellence.

Today in 1998 (yes, it is still 1998 as I write), the most important job remaining,
in my opinion, is propagating the social and commercial implications of free
software. While I greatly appreciated Russell Nelson's article “Open Source
Software Model” in the July issue of LJ, I feel the need to expand on the points
he briefly touched.

Please note that I'm not an expert in economics or politics. I'm just a build-it-
yourself kind of technical guy who is reporting his own experience in the battle
for survival, in the hopes of helping someone else adapt to new environmental
conditions. Some of these ideas have already been discussed with friends or on
the Free Software Business mailing list (fsb-subscribe@crynwr.com), which I
joined after reading Russell's article.

Viability for Individual Consultants

The best feature of any computer system is flexibility-- allowing users to tailor
its behaviour to their own needs. This flexibility is often completely unknown to
the general computer user, because proprietary software solutions tend to hide
functionality behind a rigid external interface which denies any divergence from
the expected behaviour—a user's behaviour.

When adopting free software, users are able to discover the real power of
computer systems. Today I talked with a commercial consultant who never

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

thought that programs could be adapted to one's needs. He confessed his
company has always acted the other way around—they adapted their needs to
the software they use. Most users are victims of their software and don't even
realize it.

Educating the user base about the extendibility of software will open new
markets to independent consultants, creating new employment opportunities.
Every user has different needs and solving these needs often means calling for
technical support from people who tailor or enhance the relevant software.
While this is not even imaginable with proprietary programs, source availability
allows any problem that might arise to be quickly solved and new features to
be easily added. While you may think this would quickly lead to a perfect
software package, individual needs are so diverse and specialized that the
perfect package will never exist.

For example, I and others wrote a program for a local physiology center to
analyze data for a typical kind of experiment. During two years of use, the
physicians found so many ways to enhance the program that it is now reported
as better than the commercial solutions. The total of all fees they paid during
these years reveals the program to be more expensive in the end than some of
the commercial alternatives. This fact is not relevant to my clients, as they have
exactly what they want and they know they can have more should the need
arise. The program is obviously GPL and other centers expressed interest in
getting a copy.

As more and more people are choosing free software to address their needs,
I'm sure some software companies will try to demonize Linux and the open-
source movement because they are losing market share. Such companies will
probably try to demonstrate that IT employment is decreasing and that
humankind is being damaged by the general adoption of free software. This
whole argument is bogus; computers exist to be programmed, and the more
you allow programming them, the more you build employment opportunities. If
you count the number of people who offer free software consulting, you will
greatly exceed any shrinkage of proprietary companies. Sticking to my previous
example, the physiology lab hired my company to write the program, and other
centers interested in the product are willing to hire a local consultant for
installing, maintaining and enhancing our package. Did I say “enhance”? Isn't
the program working? Yes, the program is working well, but there is room for
enhancement of the product. The local lab decided to stop development
“because we must run our experiment rather than invent new software
features”. As anyone knows, every program has a bug and a missing feature,
and this is where we build our credibility—bugs can be fixed and features can
be implemented. As I suggested before, the more you make things
programmable, the more they will be programmed.

Why should there be more employment opportunities in IT than there are now?
First of all, because free software users have more requests for new features
than users of proprietary products do, as explained above. Next, because
anyone can build her own professionalism without paying to access the sources
of information. I built my Linux expertise by studying source code and trying
things out on my own low-end PC. Now I am confident I can solve any problem
my clients might have, and my clients know I can (provided I am given enough
time to deal with the problem).

Another critical point in addition to source availability is standardization on file
formats, a field where proprietary products are revealing their worst features.
Let's imagine an environment where every file format in the system was
known: you could, for example, create indexes from any document that is
produced, thus easing later retrieval. This can be accomplished off-line without
any load on non-technical personnel.

Asynchronous reuse of data is “rocket science” for many users, because they
are accustomed to programs that use proprietary file formats (and operating
systems with no real multi-tasking or cron capabilities). As soon as free
standards are adopted, users begin asking for customizations and are willing to
pay for anything that will increase their productivity. Moreover, free standards
guarantee that customers are not making the wrong bet, as they won't ever be
stuck with unusable data if the software market changes.

While the conventional model of software distribution concentrates all
knowledge in a few companies (or one of them), open standards leverage
technical knowledge to anyone willing to learn. Whereas a proprietary product
can be supported only by a limited number of qualified consultants (whose
number and quality is centrally managed), the number of consultants
supporting a free software solution is virtually unlimited and the offer can
quickly adapt to the request.

In a world where computers are just tools to accomplish some other goals, easy
customization and quick maintenance are basic requirements of power users.
In my opinion, free software will quickly gain the trust it needs to be a real
market phenomenon. As soon as you start to trust some open-source products,
you learn that they deserve more. GNU/Linux fans must be ready to offer
support in order to fulfill the upcoming need for consultants.

Viability for Support Companies

Obviously, independent consultants don't cover all the needs of computer
users. Several activities can't be handled by individuals. Red Hat and S.u.S.E. are
demonstrating that creating and maintaining a distribution can be a good
source of revenue even when the product is freely redistributable. Debian-

based efforts are on the way, although less advanced—mainly because both
Red Hat and S.u.S.E. bundled proprietary products with Linux in order to
survive while the market share was low, while Debian is completely detached
from proprietary products.

In addition to “creating and packaging” jobs, open-source companies can
specialize in technical support, covering the situations where computer systems
are of critical importance. Big business realities using computer systems in their
productive environment won't be satisfied with either the external consultant
or the in-house technician. They need to rely on an external structure that
guarantees round-the-clock operation of their technological aids.

Even if GNU/Linux or any other operating system is demonstrated to be
completely reliable, power users will need to rely on a support company as a
form of insurance. The more important computers are for a production
environment, the more people are willing to pay to be reassured that
everything will go on working and to have someone “responsible” to call in case
of any failure. Such a “power user” support contract could also include a
provision for refunds in case of down time. Big support companies will be able
to efficiently deal with it, and clients will be happy to pay high rates if they
never need to call for assistance.

In short, I see no need for software companies to sell any product; the support
environment is big enough to offer good business positions in Information
Technologies. Those at the top could use some of the revenue to pay for free
software development, thus gaining access to the best software before anyone
else and associating their name with software products. As a matter of fact, this
practice is already pursued by the big distributions.

Viability for Education Centers

Needless to say, schools and universities have the best interest in teaching
information technologies using free software tools. Due to its technical
superiority, free software environments have more to offer to the students, but
also need more technical knowledge to be proficiently administered. I see no
money saved here in choosing free operating systems over proprietary ones,
but educational entities could better spend their money on hiring system
administrators than on subsidizing some already-too-big commercial software
company. While my country, Italy, is stuck with a few rules that offer more
support for buying things rather than for increasing human resources, other
countries are already moving in the right direction—Mexico and France, for
example, have announced plans to use Linux in their public schools.

One more point leads toward free software in education: when students get
jobs, they prefer to use tools they learned at school in order to minimize extra

learning efforts. This fact should lead colleges to teach only those tools not
owned by anyone—those that are libre. Schools should teach proprietary
software only if two conditions apply: no viable alternative is available, and the
company that distributes such software pays the school for teaching its
product. Paying someone for a product and then freely advertising it for him is
definitely nonsense.

Social Issues

A few social issues relate to choosing one software model over another one.
Although I mark them as social, they have economic implications as well.

While free software is not cheaper than proprietary software if you bill for your
own time, some environments use different rates in converting time to money.
Most emerging countries have good intellectual resources but little money, and
they usually have many not-so-new computers as well. Proprietary operating
systems are unaffordable for them, but free solutions are viable and
productive. Actually, the “Halloween” document from Microsoft underlines that
Linux is growing very fast in the Far East. Charity organizations usually have this
same environment—little money and a good amount of human resources. This
leads straight to the free software model for any IT requirement.

These ideas will probably suggest that free availability of information looks
fairly leftist in spirit, as “information to the masses” looks quite similar to the
old adage “power to the masses”. What is usually ignored is the strong rightist
flavour of the Open Source movement. The free software arena is fiercely
meritocratic and a perfect environment for free competition, where the laws of
the market ensure that only the best ideas and the best players survive.
Proprietary standards, on the other hand, tend to diminish competition by
decreasing innovation and consolidating previous results.

Limits of the Free Software Model

Naturally, I'm aware that not every software package can easily be turned into
free software. I'm not talking about office products—I'm confident some good
projects will supply this need, sooner or later. Rather, I'm talking about all
environments where a strong competition exists for a product only loosely
based on its software component. For example, industrial equipment might
include a computer and some commodity hardware (a robot, custom I/O
peripherals, PLCs, etc.); the software application hosted in the computer is a
minor part of the whole, but its features greatly affect the overall value of the
equipment. Producing and debugging such applications usually require huge
investments (preventing free redistribution of the source code), as a form of
protection against competitors.

Another meaningful example is cell telephones. They include a lot of software
and such software is the component that defines the overall capabilities of the
device. However, this software is almost invisible to the end user, who
perceives the device as a telephone and not a computer. Such software is
strictly proprietary because of its major functional role in the device.

Unfortunately, I see no easy way to liberalize this type of code. Although I don't
care too much about cell phones (I don't use them), I would prefer to see free
industrial applications because their technological content is usually worth
reusing and adapting to new problems.

Alessandro lives in one of the least Linux-aware towns in the least Linux-aware
country in the world. He writes free software for a living and advocates free
software for a mission. He hopes his upcoming child will keep off computers,
recalling the good old times when such beasts where confined to their technical
zoos. He reads e-mail as rubini@prosa.it, deleting spam and replying to
everyone else.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/058/toc058.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

Announcements by Sun and Troll Tech

Marjorie Richardson

Issue #58, February 1999

UltraSPARC, Java licensing and free Qt.

On December 8, Sun Microsystems made two announcements of interest to the
Linux community. One was the completion of the Linux port to the UltraSPARC
architecture; the other was the new, more open licensing of Java.

UltraSPARC

When Sun joined Linux International back in May, it was with the expressed
intention of joining the Linux community to do the UltraSPARC port. This has
now become a reality. In addition, they have announced their intention to allow
vendors to sell the UltraSPARC preloaded with Linux as well as Solaris.

Every machine sold preloaded with Linux is another win for Linux. An even
bigger win is having yet one more of the “big guys” acknowledge that
computers with Linux pre-installed are more attractive to potential buyers,
especially those new to Linux. I for one am happy to see Sun following in the
footsteps of Corel Computer and Cobalt Networks in making this decision.

Java Licensing

The new, open licensing for Java has been speculated about for some time. Will
Sun make it open? If so, when? Well, they did it with this announcement-
another big win for the Open Source movement. Source code has always been
free for non-commercial use and the binaries have been freely available for use
in tools developed by others. Here's how it has become more open, according
to the press release:

• Allows commercial entities to use and modify the source code for
commercial software product development without charge.

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

• Allows innovation of the source code without requiring that innovation be
returned to Sun.

• Allows commercial entities to modify and share compatible source code
with other commercial entities without charge and without mediation
from Sun.

• Allows licensees to package for resale Sun's Java platform class libraries
with virtual machines from other licensees.

These are major changes, but not quite the GPL. Developers who actually
incorporate the code into a commercial product will still be required to pay a
fee to Sun. Still, it's a step in the right direction and others are sure to follow
suit.

Troll Tech

In a similar vein, Troll Tech announced in November that it plans to release
version 2.0 of the Free Edition of the Qt graphical interface under an Open
Source license. This will eliminate any worries and controversy regarding
inclusion of the KDE desktop in commercial products.

Good news, indeed, to everyone who has wished for a user-friendly desktop for
Linux. KDE has come a long way toward providing that option for those who are
shy of the command line. (See “KDE: The Highway Ahead” by Kalle Dalheimer in
this issue.)

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/058/toc058.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

Best of Technical Support

Various

Issue #58, February 1999

Our experts answer your technical questions.

Pre-installed Slackware

I picked up a used laptop that has Slackware partitioned on the hard drive. Is
there any way to log in to it without the password? I have a UNIX book but it
does not address this problem. Do I have to re-install? I have no idea who the
previous owner was. —Mike, shbecke@ibm.net

Try to boot the computer in single user mode (type linux single at the LILO
prompt). If this does not work, you should get boot floppies in order to start a
minimum LINUX in a RAM disk. Such floppies should be available in a Slackware
distribution. Then you could mount the root partition by typing:

mount -t ext2 /dev/hda1 /mnt

and edit /mnt/etc/passwd in order to suppress the root password. —Pierre
Ficheux, pficheux@com1.fr

One of the simplest ways to do this is to obtain a boot and root disk pair from
the Slackware distribution. Boot using both and use mount(8) to mount the
root file system from your laptop. You can then edit the mount_dir/etc/passwd
(or mount_dir/etc/shadow) file to remove the password.For system
administrators concerned with this potential security problem, the only way to
prevent it is through the use of BIOS features that prevent access to the floppy
drive without a password. This is not a Linux security flaw—any UNIX platform
that may be booted from a set of floppies or from a CD-ROM that allows access
to the hard drive has the potential to be “hacked” in this way. Notable
exceptions are systems that use encrypted file systems, but those are rare and
often much slower during normal operation. —Chad Robinson, chadr@brt.com

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

Software in RPMs

I have Slackware Linux. Wherever I look, I find software that is in RPMs. Is there
no option other than shifting to Red Hat? Any conversion utilities? —Aseem
Asthana, asthana@bom4.vsnl.net.in

Try the package www.chez.com/imil/stuff/rpm4everyone.tar.gz; I use it every
day on an old Slackware 3.0 distribution. —Pierre Ficheux, pficheux@com1.fr

Try alien, a package that converts packages from one format to another.
Otherwise, compile rpm on your system so you can do the following:

rpm2cpio package.rpm | cpio -list
rpm2cpio package.rpm | cpio -make-dirs -extract

It is quite handy. Note, however, that you might find incompatibilities between
your system and the Red Hat packages. I always prefer compiling programs
from source when I am on Slackware (but I might be overly cautious). —
Alessandro Rubini, rubini@prosa.it

a.out

I just installed Red Hat's Linux 5.0. I used the C compiler to compile a simple C
program, test.c, using the command:

gcc test.c

The program compiled and produced an executable called a.out. When I try to
run a.out by typing:

a.out

I get a message that says a.out is not a recognized command. What am I doing
wrong? —Jeff Miller, jeff_miller@msn.com

First confirm that the a.out file has the correct permissions. Use ls -al a.out to
confirm that the executable (x) bit is set. If it isn't, use the chmod +x command
to set this flag. If the permissions are correct, specify the full path to the file, as
the current directory usually isn't in your default path. Use ./a.out to ensure you
are attempting to execute the correct program. Change your path by editing
the /etc/profile file or the profile file in your home directory. —Vince Waldon,
vince.waldon@cnpl.enbridge.com

Disk Space

How do I find out how much free space is left on my disk? —Kirk, sci@wadi-
petro.com

http://www.chez.com/imil/stuff/rpm4everyone.tar.gz

Use the df command. Briefly, running df without arguments will show the free
space (in KB) on all your disks; df /some_directory will show the space left on
the disk that /some_directory is on. Also note that df has an undocumented -h
option that shows sizes in GB or MB as appropriate—convenient for today's
large disks. See the man pages for information on other options. —Scott
Maxwell, s-max@pacbell.net

Relaying E-mail

The problem is the following. Each time I try to send an e-mail using a program
that manages pop3 accounts such as Eudora or Netscape Mail, I receive the
following message: “The recipient user@domain.com is not acceptable to your
SMTP server. The message is not sendable until the recipient has been
changed.”

This problem appeared after we upgraded from the previous version of Linux
to version 5.0. No problem occurs when receiving e-mail using these programs
or when sending e-mail through Pine—only when using Eudora or any other
similar program. How can we solve this? —Ricardo A. Williams L.,
rick@corotu.stri.si.edu

The problem is in the new security policies of Red Hat 5. Your mail gets refused
with a message of “551 we do not relay”. The solution here is authorizing your
client machine to relay mail through the Linux server. Your /etc/sendmail.cf is
quite clear about the options:

file containing IP numbers of machines which can
use our relay
F{LocalIP} /etc/mail/ip_allow
file containing names of machines which can
use our relay
F{LocalNames} /etc/mail/name_allow
file containing names we relay to
F{RelayTo} /etc/mail/relay_allow

Add lines to the proper file describing either the client's IP, the client's name or
the recipient's name. —Alessandro Rubini, rubini@prosa.it

Digital UNIX Gateway?

I currently have a TCP/IP (via modem) connection between my Linux box at
home and my office workstation (DEC station running Digital UNIX). The
problem is that the DEC machine is not a gateway, so I cannot reach the rest of
the subnet or the rest of the world, for that matter. Is there a way my Linux box
can reach the subnet gateway which is two hops away? The route command in
my current version of Linux (Slackware, kernel 2.0.0) does not support the -
hobcount flag, which is supported by Digital UNIX and would do the trick. —
Martin Olivera, martin@pantano.ucsd.edu

If your PPP IP address is one from the subnet your DEC station is sitting on, you
just need to make sure it does ARP proxying for your Linux machine (in other
words, it has to accept packets for your Linux machine's IP on its local
Ethernet). If this is not the case, then it is more difficult. The options you have
are:

• Find out if Digital UNIX can do IP masquerading like Linux can.
• Configure routed on your DEC server and advertise a route pointing to

your Linux machine. Note that this will not work if your default gateway
ignores RIP information, and it may upset your network administrator
and/or be against company policies.

—Marc Merlin, marc@merlins.org

Typing Spanish Characters

As a Spanish speaker, I want to use a keyboard with a complete set of Latin
characters. I succeeded in implementing it for almost all applications, except
Netscape. I installed the XKeysymDB file in the correct place, and this file works
properly for Sun machines (I tested), but not for PCs with Linux. I tried to find
the answer at Netscape's home page, but I couldn't. Perhaps I did the wrong
search. Does anyone know how to set Netscape in order to have a “compose”
key which produces accents, tildes and all that sort of thing? —Guigue,
guigue@nucate.unicamp.br

If I'm not mistaken, the XKeysymDB file works only for a particular keyboard, so
the one that works for your Sun keyboard is unlikely to work for your Linux
machine's keyboard. Jamie Zawinski's xkeycaps found at http://www.jwz.org/
xkeycaps/ may help; it is a graphical editor for editing keyboard setups under X.
—Scott Maxwell, s-max@pacbell.net

Migrating from Windows

I got interested in Linux through a programme on BBC World. However, after
an afternoon roaming the Internet, I couldn't get an answer to two questions
most laymen probably have on the subject: does Linux replace Windows on my
computer and is the process irreversible; will I be able to use my Windows-
based programmes on Linux? —Philippe Humblé, humble@mbox1.ufsc.br

Linux can replace Windows on your computer, or the two can coexist. If you
buy a commercial distribution or a Linux book, it should help explain how to do
this. The process is irreversible only in the sense that you'll never want to go
back. There are different ways to use your Windows-based software under
Linux. A couple of emulators—Wine and Wabi—enable you to run some
Windows software directly under Linux. (Similarly, DOSEMU lets you run DOS

http://www.jwz.org/xkeycaps
http://www.jwz.org/xkeycaps

software under Linux.) Other Windows software can be run by rebooting the
machine into Windows, using the software, and then rebooting into Linux again
as soon as possible. As time goes on, you'll discover Linux software that can
partially or entirely eliminate your need for Windows—Linux-native word
processors, spreadsheets and such. —Scott Maxwell, s-max@pacbell.net

Alternatives to X

I am new to Linux and have heard much about the X Window System when
word processing using Applixware Office or Corel's Word Perfect for Linux.
What if I don't want to use X? Are there quality office applications that will run
without X?<\n> —John Tam, johta@mailexcite.com

There is not, as far as I know, a non-X integrated office suite, but many of the
pieces exist. For document processing, you can use TeX. Whether you'll like TeX
or not depends on your needs—it is rock-solid and extremely powerful, but it is
not WYSIWYG. —Scott Maxwell, s-max@pacbell.net

Most people associate “quality office applications” with “graphical user
interface”, a “what you see is what you get” environment like the current flock
of office applications shipping for Windows machines. On UNIX systems, the
standard GUI environment is the X Window System, so all of the current office
suites for Linux run on top of X. This makes life much easier for the
programmer—she can concentrate on writing a good word processor and leave
the details of making it “graphical” to X. Early versions of X were somewhat
tricky to set up and supported only a small subset of available graphics cards,
but the configuration programs have come a long way as has driver support—a
quick read of the X HOWTO should leave you with nothing to fear from “getting
graphical” on your Linux machine. —Vince Waldon,
vince.waldon@cnpl.enbridge.com

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/058/toc058.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

New Products

Ellen Dahl

Issue #58, February 1999

iHTML Merchant 2.0, Auto-Changer, JetStor RAID and more.

iHTML Merchant 2.0

Inline Internet Systems, Inc. announced the availability of the iHTML Merchant
2.0 software solution for electronic commerce on the Internet. iHTML Merchant
2.0 enables business owners, web developers and ISPs to deploy sophisticated
on-line storefronts. Upgrades of the software from 1.0 are $149US. Version 2.0
is $739US per web server, which includes iHTML Pro 2.16 (available separately
at $590US). Contact: Inline Internet Systems, Inc., 7305 Rapistan Court,
Mississauga, ON L5N 5Z4, Canada, Phone: 905-813-8800, Fax: 905-813-8286, E-
mail: info@inline.net, URL: http://www.ihtmlmerchant.com/.

Auto-Changer

UniTrends Software has released Auto-Changer, tape library software for Linux.
Auto-Changer allows Linux users to back up and work with tape libraries. CTAR
sells for $195 on Linux (Intel) and Auto-Changer is $149 for Linux, but must be
used with CTAR, the Business Critical Backup Solution.

Contact: UniTrends Software Corporation, 1601 Oak St., Suite 201, Myrtle
Beach, SC 29577, Phone: 800-648-2827 (or 843-626-2878 outside the US), Fax:
843-626-5202, E-mail: sales@unitrends.com, URL: http://www.unitrends.com.

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

JetStor RAID

AC&NC announced the JetStor RAID desktop-sized SCSI disk array system which
includes a new high-performance RAID controller as well as functional
improvements. Complete information including technical specifications can be
found on Advanced Computer and Network Corporation's web site. Sample
pricing: 32GB for $6,500, 63GB for $7,999 and 126GB for $12,250.

Contact: AC&NC, 5001 Baum Blvd., Suite 770, Pittsburgh, PA 15213, Phone:
412-683-9010, Fax: 412-683-9070, E-mail info@acnc.com, URL: http://
www.acnc.com/product_jetstor.html.

VariCAD 7.0-1.0

VariCAD has released a new version of its professional CAD system for
mechanical engineering—VariCAD 7.0-1.0. VariCAD 7.0-1.0 is able to
communicate with rendering software and FEM software (Cosmos, NuGraf,
etc.). Free trial and demo versions are available at VariCAD's web site. The
prices of the VariCAD system remain unchanged—VariCAD for Linux is $299-
$499.

Contact: VariCAD, 931 Greenbriar Avenue, Ottawa, ON K2C 0J8, Canada, Phone
613-723-0953, E-mail: info@varicad.com, URL: http://www.varicad.com/.

MetaCard 2.2

MetaCard Corporation announced the release of MetaCard 2.2. New features
include support for new image formats including PNG and animated GIFs, the
ability to resize images on all platforms, and many new properties, commands
and functions to make application development faster and easier. The free
MetaCard 2.2 Starter Kit is available from the MetaCard web site.

Contact: MetaCard Corporation, 4710 Shoup Pl., Boulder, CO 80303, Phone:
303-447-3936, Fax: 303-499-9855, E-mail: info@metacard.com, URL: http://
www.metacard.com/.

Macsyma 421 for Linux

Macsyma Inc. announced the release of Macsyma 421 math software for Linux.
Macsyma offers mathematical power in symbolic, numerical and graphical
mathematics. The PC interface offers Macsyma's MathTips Advisor, which
allows users to type questions in their own words and receive executable “tips”.
The U.S. commercial price for Macsyma 421 for Linux workstations is $249 (or
$199 without paper manuals).

Contact: Macsyma Inc., 20 Academy Street, Arlington, MA 02476, Phone:
781-646-4550, Fax: 781-646-3161, E-mail: info@macsyma.com, URL: http://
www.macsyma.com/.

HP Firehunter Supports Linux

Hewlett-Packard Company announced that its HP Firehunter family of Internet
service-management solutions, targeted for the Internet service provider (ISP)
community, now supports Red Hat Linux. HP Firehunter is a family of
measurement and monitoring solutions designed specifically to help ISPs
proactively manage Internet services such as mail, news and web functions.
The product family includes Firehunter/L ($1,450) for small ISPs running up to
20 Internet servers and Firehunter 1.5 for mid-sized providers with up to 60
servers. See web site for pricing.

Contact: Hewlett-Packard Company, 3000 Hanover Street, Palo Alto, CA 94304,
Phone: 650-857-1501, URL: http://www.firehunter.com/.

PlanetUplink

Planet Computer's newest business solution, PlanetUplink, has been expanded
to support Linux (server and client). PlanetUplink IBN (Internet Based Network)
allows businesses to gain access to and share virtually any application or
database simultaneously (real time) on almost any computer from their remote
and multiple offices, globally, via the Internet. IBN is available in 2 versions:
Internet Office Hosting (IOH) and Internet Application Hosting (IAH). IAH/IOH
user costs vary from $45 to $75 per month, in addition to setup fees depending
upon the application(s).

Contact: Planet Computer, 910 16th St., Suite 624, Denver, CO 80202, Phone:
303-825-1778, Fax: 303-825-1773, E-mail: planet@planet-computer.com, URL:
http://planetuplink.com/.

NetTracker 3.5 and Webmaster 3.0

Sane Solutions, LLC and COAST Software Inc. announced the offer of a package
combining the NetTracker 3.5 Professional web-based usage tracking software
and the COAST Webmaster 3.0 web site management software. The NetTracker
3.5 product is designed to provide a simplified solution for web site traffic
analysis. COAST WebMaster 3.0 is used to monitor and maintain the content of
Internet and Intranet web sites. The NetTracker 3.5 Professional/COAST
WebMaster 3.0 bundle is available for $750US.

Contact: Sane Solutions, LLC, 35 Belver Ave., Suite 230, North Kingstown, RI
02852, Phone: 800-407-3570, E-mail: info@sane.com, URL: http://

www.sane.com/. COAST Software Inc., 60 Queen Street, 14th Floor, Ottawa, ON
K1P 5Y7, Canada, Phone: 613-567-3201, E-mail: info@coast.com, URL: http://
www.coast.com.

ICE.PPN

J. River has released ICE.PPN (Portable Private Networking) to provide secure,
end-to-end transmission of data between a Windows client and a corporate
UNIX server, regardless of whether a firewall is in place. A full-featured 30-day
trialware version of ICE.PPN can be downloaded from J.River's web site.
Suggested list price for a server license with 5 clients is $1195. Reseller pricing
is available.

Contact: J. River, Inc., 125 North First Street, Minneapolis, MN 55401, Phone:
612-677-8200, E-mail: info@jriver.com, URL: http://www.jriver.com/.

O2 Object Database Management System

Ardent Software, Inc. announced the availability of the O2 Object Database
Management System (ODBMS) for the Linux operating system. Ardent's O2
System, an ODMG-compliant ODBMS available on Linux, gives developers
access to language bindings, OQL (Object Query Language) and O2Web, an
integrated set of tools for simple and rapid development of web applications.

Contact: Ardent Software, Inc., 50 Washington Street, Westboro, MA
01581-1021, Phone: 508-366-3888, Fax: 508-366-3669, E-mail:
info@ardentsoftware.com, URL: http://www.ardentsoftware.com/.

Quant-X and Altera SQL Server version 2.0

The Altera SQL Server is a complete transactional data storage and retrieval
system based on the relational database model and also a programmable web
server. It is a multi-user, relational database with ODBC and JDBC connectivity,
demanding relatively few resources. Quant-X has provided Altera with the
appropriate hardware in order to port the Altera SQL Server on the above-
mentioned platform. Quant-X and Altera came to an agreement regarding the
bundling of Altera SQL Server Version 2.0 with Quant-X hardware. See web site
for pricing.

Contact: Altera Ltd., E-mail: webmaster@altera.gr, URL: http://www.altera.gr/.

Linux Edition of Ingres II

Computer Associates International, Inc. announced the activation of its Ingres II
Linux Edition Open Beta program. This program enables customers to leverage

the Linux platform in building core business applications in an n-tier
environment, as well as preview the new version of CAI's RDBMS. The beta
version of Ingres II Linux Edition can be downloaded for free from http://
www.cai.com/products/betas/. When the generally available version is released,
it will also be offered as a free download.

Contact: Computer Associates International, Inc., One Computer Associates
Plaza, Islandia, NY 11788, Phone: 1-888-7INGRES (888-746-4737), E-mail:
info@cai.com, URL: http://www.cai.com/.

Thin Client PC X Server

GraphOn announced the world's first thin-client PC X server solution, providing
high performance access to the X Window System and UNIX-based applications
anywhere on an organization's Intranet, the public Internet or over dial-up. Visit
the web site for pricing and further information.

Contact: GraphOn Corporation, 150 Harrison Avenue, Campbell, CA 95008,
Phone: 408-370-4080, Fax: 408-370-5047, E-mail: sales@graphon.com, URL:
http://www.graphon.com/.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/058/toc058.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

Color Reactiveness on the Desktop

Bowie Poag

Issue #58, February 1999

Mr. Poag describes the InSight project—designing a desktop which uses color
to inform the user of what is happening with his applications.

For the seven-month period spanning July 1997 to late January 1998, I was
involved in an OS development project called InSight. Part of my role within the
InSight development group was to study interface designs in an attempt to
further understand which aspects would still be viable and useful for users for
the next five to seven years. In addition to the interface, I had the opportunity
to collaborate on the design of the underlying OS, since much of what we were
doing on the visible aspects of the system was tied very heavily to the
underlying workings of the OS. Bringing together the design of the desktop and
the underlying mechanics of the OS, we hit on what we believed to be a good
idea—the concept of color-reactive destop elements.

Descriptions of Color-Reactive Elements

Lamps

Figure 1

A lamp is a window element in which the color is tied directly to the operational
status of the application using that window. Simply put, it is like a status LED for
that particular application. As you use the program, its lamp changes color
depending upon what is happening and what you'd like it to reflect—CPU
usage, program status, etc.

Let's assume you have an e-mail checker which checks your mailbox every two
minutes for new mail. Most of the time the lamp in the window remains blue,
meaning it is just sitting around waiting for something to do. Every two minutes
it turns yellow to indicate it is busy checking your mailbox for new mail. If no

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1
https://secure2.linuxjournal.com/ljarchive/LJ/058/3039f6.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/058/3039f6.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/058/3039f6.jpg

mail is found, it goes back to blue. If new mail is found, it turns yellow or begins
flashing.

Beacons

Figure 2

Beacons are like miniature lamps, meant to be used only when applications are
in an iconified state. If you have a window open on your desktop, it has a lamp
in one corner of the window. Now, when you click the iconify button, the entire
application is collapsed into an icon on your desktop. If you still want to
monitor that application, collapse it to a beacon instead of an icon. In that way,
you will be able to see what is going on with the application without having to
constantly open and close it.

For example, suppose you are downloading five different RPMs via FTP. You
can collapse each one down to a beacon with a color that reflects whether or
not the download is proceeding without problems. At this point, you have five
little beacon icons at the bottom of your screen and you can monitor their
progress by checking if they are all still glowing a nice shade of green. You could
even set it up so that the color was a function of transfer speed. Bright green
could indicate a fast transfer; red could indicate a slow or dead transfer.

In order to fully understand how lamps and beacons behave, keep in mind the
fact that the color of the lamp (or of the beacon) can be tied to a variety of
“behavior sets” such as CPU usage, process status, or specific events which may
occur within specific applications. A “behavior set” dictates what actions will
produce what colors. Here are a few practical examples.

Figure 3

Suppose one of the above-mentioned FTP transfers begins to stall. One of the
beacons begins to glow red and stays red for several minutes. Simply pop the
window back open, kill or restart the transfer. The instant you kill that process,
the other four beacons begin to glow more brightly, since you have just
improved the speed of the other four by freeing up some bandwidth.

Beacons make the task of babysitting multiple applications a breeze. An entire
3-D rendering package could be collapsed down to a single beacon—one that
will turn green when the rendering of a scene was complete, for example.
There is no longer any need to continually pop the application back open to see
what is going on.

https://secure2.linuxjournal.com/ljarchive/LJ/058/3039f4.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/058/3039f4.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/058/3039f4.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/058/3039f3.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/058/3039f3.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/058/3039f3.jpg

Methodology

Figure 4

Since the behavior of color-reactive elements should be consistent throughout
the desktop, a centralized point of control is needed (in the form of a control
panel, for example) to allow the user top-level control. From there, it would also
be wise to allow the applications, if permitted by the user, to dictate their own
behavior sets. Ultimately, the user must have total and complete freedom to
dictate the appearance and behavior of color-reactive elements on his or her
desktop.

There are two ways to go about changing the appearance of a lamp or beacon
on the desktop. With InSight, the plan was simply to change the icon on the fly
by loading the appropriately-colored icon in its place. The second way, which
takes considerably more CPU time to accomplish, involves hue-shifting the
image data within the icon +/- 180 degrees to achieve the desired color.

The first method requires a small cache of colored icons to be present and
ready to be loaded. About eight different colored lamp icons (and eight beacon
icons) are usually enough to handle most situations. On the FTP site (ftp://
ftp.linuxjournal.com/pub/lj/listings/issue58/) is a file called 3039.zip, containing
a small archive of example lamps and beacons in different colors for you to
look at and experiment with. The eight colors are clear, blue, aqua, green,
yellow, amber, red and purple. That's right—the raw image data has already
been provided for you. These icons are, in all respects, ready-to-use.

Implementation

Figure 5

Here's how to go about constructing a control panel to handle behavior sets for
color-reactive desktop elements.

The user should be presented with a list of potential “states” (like Busy, Idle,
Sleeping, Error, etc.) and then be given the ability to map the color of their
choice to each state.

The Color Transition Table allows the user to specify the physical behavior of
the Lamp or Beacon. A whole row of “C” means simply “for this behavior, the
color always remains clear”. A repeating sequence of BRBRBRBRBRBR would
make the lamp flash rapidly between blue and red, over and over again. To
slow down the rate of blinking, use a sequence like BBBBRRRRBBBBRRRR.

https://secure2.linuxjournal.com/ljarchive/LJ/058/3039f5.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/058/3039f5.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/058/3039f5.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/listings/058/3039.zip
https://secure2.linuxjournal.com/ljarchive/LJ/listings/058/3039.zip
https://secure2.linuxjournal.com/ljarchive/LJ/058/3039f1.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/058/3039f1.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/058/3039f1.jpg

The Color Transition Table also allows the user to specify the sequence of
colors it will show to indicate each specific state. If you wanted to get the user's
attention, you would probably want to make the lamp or beacon flash rapidly.
This can be done by alternating the sequence of colors, like drum beats in a
song. To use an analogy, the lights on a police car can be thought of as color-
reactive elements. When the police car is in a state called “pursuit”, its behavior
is red, blue, red, blue, red, blue.

To make a lamp or a beacon flash like it is on fire, a sequence like ROYOROYOR
will make it strobe from red to orange to yellow to orange, repeatedly.

The Color Transition Table allows for a tremendous amount of flexibility when
dictating the precise behavior of color-reactive desktop elements. By simply
changing the entries in the table, you can do everything from solid colors to
wild rainbow effects just by playing with the order of colors for each state.

Listing 1

An example behavior set is shown in Listing 1. This is what the behavior set
would look like if you wanted:

• Clear color for idle
• Blue for sleeping
• Violet for low CPU usage
• Red for moderate CPU usage
• Orange for heavy CPU usage
• Yellow for severe CPU usage
• Slow blinking green/clear for attention
• Fast blinking red/clear for error
• Normal blinking aqua/clear for busy

Other Examples

Using color as a function of CPU usage, a behavior set might look like this:

• Dead: clear
• Light: purple
• Moderate: blue
• Heavy: green
• Severe: yellow
• Extremely CPU-intensive: red

https://secure2.linuxjournal.com/ljarchive/LJ/058/3039l1.html

As a function of process state, it might be defined this way:

• Zombie: clear
• Sleeping: purple
• Idle: blue
• Running: green
• Waiting: yellow
• Segfault/dead stop: red

As a user cue, perhaps in a 3-D rendering package:

• Waiting for user input: blue
• Busy: yellow
• Rendering: green
• Error: red
• Finished: clear

As you can see, instead of using simple solid colors, lamps and beacons can be
made to flash colors, such as flashing red to indicate a catastrophic failure, alert
or even an incoming message.

Figure 6. Local and Remote Window Example

Behavior

A pager program or e-mail checker could be collapsed into a beacon that would
turn green whenever you had a new message waiting. A packet sniffer could be
made to flash red whenever suspect ICMP packets are received. An FTP client
could use its lamp to indicate the various stages of connection to a host or the
progress of a file transfer.

Questions and Answers

Conclusion

I propose that the GNOME desktop should not only feature this design
innovation, but use it prominently in the general layout of each window as per
the recommendations given here. Let's go for it! It is a simple concept to
understand, simple to implement, and its function ultimately justifies its
inclusion.

https://secure2.linuxjournal.com/ljarchive/LJ/058/3039f2.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/058/3039f2.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/058/3039f2.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/058/3039s2.html

Update

Since I first wrote this article, GNOME Developer Eckehart Burns has developed
a color-reactive Lamp/Beacon widget to the GNOME UI library which is
currently part of the GNOME CVS tree. GNOME application coders now have
the ability to incorporate CR into their applications at their discretion.

All listings referred to in this article are available by anonymous download in
the file ftp.linuxjournal.com/pub/lj/listings/issue58/3039.tgz.

Bowie Poag (bjp@primenet.com) is a Computer Science major at the University
of Arizona. Aside from school, he is currently working as the System
Administrator for the Chemistry department's computer graphics facility.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

https://secure2.linuxjournal.com/ljarchive/LJ/listings/058/3039.tgz
mailto:bjp@primenet.com
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/058/toc058.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

Book Review: Building Network Management Tools with

Tcl/Tk

Syd Logan

Issue #58, February 1999

This book describes two SNMP extensions to Tcl. The first, Tickleman, is a
commercial product that is available for a fee. The second, Scotty, is a package
that is freely available via the Internet.

• Authors: Dave Zeltserman and Gerard Puoplo
• Publisher: Prentice Hall
• E-mail: sales@prenhall.com
• URL: http://www.prenhall.com/
• Price: $48 US
• ISBN: 0130807273
• Reviewer: Syd Logan

The stated target audience for this book is the systems administrator or
network consultant who needs to develop network management software.
While feature-rich third-party network management tools (for example, HP's
Openview) are widely available, there may be times when an administrator or
network consultant will find that the tools at his/her disposal are not flexible
enough to solve a particular problem. In addition, the costs of purchasing third-

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

party tools can often be prohibitive; it may be impractical to spend thousands
of dollars on a package, especially if one's network status monitoring needs
tend to be modest.

Developing your own tools in Tcl/Tk will take some effort, but Linux comes with
everything except possibly the extensions to Tcl that are needed to perform
SNMP (simple network management protocol) communications. (A search on
the Net indicated there is a Red Hat RPM for Scotty, one of the extensions.) The
book describes two SNMP extensions to Tcl. The first, Tickleman, is a
commercial product that is available for a fee. The second, Scotty, is a package
that is freely available via the Internet.

For those of you who are unfamiliar with Tcl/Tk, SNMP, or RMON (remote
monitor), a lot of new material is included for you to read. Those interested in
learning about these technologies form a second target audience for this book,
one to which I belong. I was already familiar with SNMP, having used it to
develop a remote configuration tool for X terminals several years ago. I was
new to Tcl/Tk, but not to scripting or GUI development. I read this book
primarily to gain an understanding of Tcl/Tk. I wanted to learn about the tools,
the commands and the syntax of Tcl/Tk by seeing how it could be used to solve
a non-trivial programming task.

A third audience for this book is engineers interested in the design of network
management software. The high-level concepts introduced should apply
regardless of the programming language or GUI APIs the developer might
choose to work with, although it will be up to the reader to make the transition
from Tcl/Tk to whatever tool set is to be used.

Book Content

The book consists of three major sections. Section 1 includes Chapters 1 and 2,
which introduce the extensions (Scotty and Tickleman) which allow Tcl to be
used with SNMP. Chapter 2 provides a nice survey of the sort of network
management tools the authors intend to be written using the technologies
covered. Much of the information in this chapter will be new to readers
unfamiliar with SNMP or TCP/IP networking and is provided with little
explanation. I don't have a problem with this; the stated audience of the book,
after all, is the network consultant, and my expectation is that network
consultants are familiar with the network-related concepts and technologies in
this chapter and elsewhere in the book. However, if you are new to
technologies like SNMP, you may want to search the Web for background
information or perhaps take a look at one of the books listed by the authors.
They state that learning the basics of SNMP is easy. I agree, but I think the book
would have benefitted from an early chapter introducing TCP/IP, SNMP and

RMON, including an overview of MIB-II variables similar to the one provided
later in the book in Chapter 12.

The second section, chapters 3 through 9, introduces Tcl/Tk and further
discusses the Scotty and Tickleman SNMP extensions to Tcl.

Chapter 3 is entitled “Tcl Basics”. Arrays, variables, expressions, procedures and
functions, string manipulation, and flow of control aspects of Tcl are all covered
in this chapter. Chapter 4, “More Tcl”, covers topics such as Tcl built-in variables,
writing HTML source files, file I/O, event-driven programming and pattern
matching. To illustrate pattern matching, a routine capable of validating an IP
address or mask is presented and this routine is used in code later in the book.
Because of this, I would suggest skimming Chapter 4, even if you are already
experienced with Tcl, paying close attention to the code examples presented. If
you are new to Tcl, you might want to fire up wish and experiment with some of
the code in these chapters as you read along; this will help solidify the material
as it is presented.

Chapter 5 is where all the fun begins. This chapter discusses both the Scotty
and Tickleman SNMP extensions to Tcl. Reading this chapter teaches you to use
SNMP to connect to an SNMP daemon on a host, and once connected, set and
get MIB variables and perform other SNMP operations both synchronously and
asynchronously. The chapter first deals with Tickleman and continues by
showing how the same operations illustrated with Tickleman can be performed
using Scotty. This chapter is important and should be studied carefully (even
read twice, if necessary) before moving on.

Chapter 6 wraps up the discussion of Tcl and Scotty/Tickleman with the design
and implementation of a polling loop capable of obtaining information from a
number of network devices. The chapter is code intensive; I'd recommend
reading slowly and carefully. It begins by describing the author's approach to
maintaining data about the devices being polled (specifically, SNMP retry
counts and timeout values, and community names organized by IP address and
subnet). This data is stored in the form of a Tcl script at the beginning of the Tcl
code that performs the polling task. When asked to poll a given device, this data
is searched, first for an exact IP address match followed by a match based upon
subnet mask if an exact IP match was not found. If neither of these searches
results in a match, hardcoded default values are used instead. The code that
performs the lookup and retrieves the data is presented in detail. The
remainder of the chapter deals with implementation and use of the polling
loop.

Now that the reader has a grip on Tcl and the use of Scotty and Tickleman, the
authors begin a discussion of GUI development using Tk. Much as was done for

Tcl, Chapter 7 starts from the beginning, assuming no prior experience on the
part of the reader. Again, I suggest firing up wish and trying out the Tk
examples as you read. After some basic Tk widgets are introduced, the authors
develop an example Tk application similar to the full-blown StatusMgr
introduced in Chapter 1, making use of the Tk widgets presented earlier in the
chapter. The authors do not go into any great detail when they discuss the Tk
widgets introduced in this chapter; for details, you will need to refer to a Tcl/Tk
reference. Their goal is to give the reader just enough information to make
sense out of the Tk sample code presented. However, be aware that some of
the sample code presented makes use of Tk widgets not explained in the text.

Chapter 8, “More Tk”, continues the book's coverage of Tk. The chapter starts
by designing a table widget using Tk components. Next, an interactive IP path
trace graphic is designed, where the code illustrates how to register and
respond to mouse enter, move and leave events within a canvas. The chapter
concludes with a discussion of the Itcl Mega-Widgets. These are extension
widgets to Tk and are provided with the Tickleman package, or can be
downloaded from the Net for use with Scotty. The authors first discuss several
Mega-Widgets in a manner similar to that used to introduce Tk widgets in
Chapter 7. They then use these widgets to re-implement the StatusMgr
interface that was developed earlier in Chapter 7.

Chapter 9 discusses socket programming using Tcl's socket command. The
chapter first covers some of the commands associated with Tcl sockets, then a
very simple client/server example is presented. Finally, the authors describe
how to build a web-based interface, so users can view network management
data using a browser such as Navigator.

The third and final section of the book uses the information presented in the
first two sections to build four complete network management tools. Chapter
10 develops a response time monitoring tool. This tool gathers the following
statistics: current (last measured) delay, average delay, peak delay and number
of completed tests as an indication of the reachability of the device being
tested. The tool is capable of monitoring several network devices at once, and
results are displayed in the table widget developed earlier in the book.

In Chapter 11, the authors present and discuss code that implements a
network discovery tool. The code is based upon Tickleman, not Scotty. The
authors are careful to point out in the source code all places that are SNMP
specific; I assume this was done to identify those portions of the code that
would need to be ported by readers using Scotty. It might have been helpful for
the authors to supply both Scotty and Tickleman versions of the code. Chapter
11 is code-intensive; perhaps 90% of the chapter consists of annotated listings.

Chapter 12 discusses another sample application, StatusMgr. In contrast to
Chapter 11, this chapter does not provide code—just a description of the
program's organization and flow of control, making it a more casual read. The
StatusMgr application makes use of code discussed and developed in earlier
chapters, and the authors tell you where to look when needed. To get the full
effect of this chapter, you can download the source code from the Internet to
glance at as you read.

StatusMgr appears to be a serious network management tool, one that
administrators should find useful. The application data can be accessed from a
console or X terminal via the Tk user interface or from a web browser over the
web. The application displays information such as device network availability,
reset counts, interface uptimes, interface utilization and interface discards. It is
also capable of reporting which nodes are routing the most IP traffic and are
generating and receiving the most IP traffic. The application also reports
historical availability information for the previous 48-hour period.

Readers should find StatusMgr a good starting point for adding their own
custom network management features. The design of the user interface seems
to lend itself to expansion. (Functional groups in the Tk version are organized
as tab dialogs.) Since you'll have the source code and this book, you should
have enough information at your disposal to tweak the code and add your own
custom features.

Chapter 13 presents the next full-blown application, an IP path tracing tool. This
tool is similar to traceroute, but with significant differences. The application not
only shows the route from source to destination, but it also indicates the device
types along the way (e.g., serial, Ethernet, token ring) and operational
characteristics of each link (e.g., speeds, device vendor, number of packets
forwarded by second). The route is depicted graphically using code developed
in Chapter 8 and the operational data is displayed using the simple table
widget, also developed in Chapter 8. The tool polls for operational data every
60 seconds, so it can be used to monitor the health of the link which is
depicted. The authors are careful to warn the reader that the tool may not do
its job 100% of the time. This is due to the use of RFC 1213 IP routing tables as
opposed to the newer IP forwarding table defined in RFC 1354. Their reason for
this choice is a logical one; RFC 1354 was not widely deployed at the time of the
book's writing.

The chapter is well-organized, with the first section describing the tool in
general. Following sections describe the code which traces the IP path, builds
the user interface and polls the nodes along the path for operational status.

Chapter 14 discusses RMONv2, which can be used for application-level protocol
monitoring. These tools can be used to configure RMONv2 and build an
inventory of your current RMONv2 probe configurations.

Chapter 15 is the final chapter in the book. It describes how to use the Tcl plug-
in for both Netscape Navigator and Microsoft's Internet Explorer. Information is
provided on downloading the plug-in from the Internet. The plug-in basically
allows your browser to handle HTML documents with embedded Tcl/Tk scripts.
The authors present a quick overview of security policies supported by the Tcl
plug-in, then go on to describe the <EMBED> HTML tag which is used to embed
Tcl code in an HTML document. Then, the authors suggest two practical uses of
Tcl plug-ins for network management. The first is to provide a graphical front-
end to server-based management applications, meaning a Tcl applet
embedded in an HTML page could connect via sockets to a host to retrieve
network management data, which the applet would then render. The second
use is to display graphs of network management report data that is stored in a
server-based file or database. Examples for both of these uses of embedded Tcl
are provided, along with the code necessary to implement them.

Appendix A provides a Tcl script that creates a table mapping RMON octet
strings to names such as ether2.ip.tcp.kerberos. This table defines the set of
protocols that an application of the type developed in this chapter is interested
in configuring. The authors started Chapter 14 by developing code that
connects to a device and queries RMONv2 for the protocols supported by the
device. These resulting protocols are then searched for in the application-
defined table. The results of this search define the protocols which can be
probed by the Tcl application. Next, scripts are developed for configuring the
RMONv2 Protocol Distribution Control Table, Address Map Control Table, Host
Control Table and Matrix Control Table. Finally, the chapter develops code
which accesses each of these tables for data. For example, code is developed
which can access packet and octet counts for a given protocol (e.g.,
ether2.ip.tcp.nntp) using the Protocol Distribution Control Table. Not having
previous exposure to RMONv2, this chapter will provide an idea of its
capabilities; a look at the relevant RFCs will give a more complete overview. I'm
sure this was intentional, since RMON is not the principal subject of the book.
The discussion of RMONv2 Matrix Groups provides code that configures the
hiMatrixControlTable , but no code to retrieve information.

Obtaining the Source Code

Instructions for obtaining the sample code and the SNMP Tcl extensions are
provided in the book. The sample code is available from Net Mgmt Solutions,
Inc. and requires a login and password wich are provided in the book's preface.
In order to access the download page, you must give your name, phone
number and e-mail address, which is a bit much as far as I am concerned.

Personally, I feel the book should have been packaged with a CD or floppy
containing the latest releases of Tcl/Tk, Scotty and the sample code. The Scotty
code was downloaded from the web.

Overall Impression

This book provides a comprehensive overview of the use of Tcl/Tk to develop
both stand-alone and web-based network management tools. If you are a
network consultant or system administrator, it should provide you with a good
starting point for the development of custom tools not present in your current
tool set. The authors provide information about Tcl/Tk and the Scotty and
Tickleman SNMP extensions to Tcl. With this information, you should be able to
start with the code from any of their sample applications and tweak it into the
network management tool that best meets your needs.

For readers wanting an introduction to Tcl/Tk and SNMP, I think this book
serves well to a certain degree. If you are new to SNMP or networking, you may
want to look on the Internet for a more complete introduction. As far as Tcl/Tk
goes, the book does a fairly good job of describing things, but eventually you
will need to augment it with a Tcl reference or programming primer. The
authors list (at the end of Chapter 15) additional books, newsgroups and web
sites that provide information about SNMP, Tcl/Tk and network management in
general.

Depending upon the phase of the moon, you'll find Syd developing software for
Macintosh (Apple's MacX 1.5 and 2.0), the X Window System (Z-Mail for UNIX)
and even Windows NT (NetManage's NFS client). He was a member of the team
that produced the XIE example implementation for X11R6. In his spare time, he
enjoys buzzing around the San Diego coastline in Cessnas and Piper Archer IIs.
He can be reached at slogan@cts.com.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/058/toc058.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

LJ Interviews Informix's Janet Smith

Marjorie Richardson

Issue #58, February 1999

Janet Smith is the Director of the Linux Business Unit for Informix Software, Inc.

Janet Smith is the Director of the Linux Business Unit for Informix Software, Inc.
Her responsibilities include implementing marketing strategies as well as
providing solutions to product and strategic issues concerning Linux. At
Informix, prior to being promoted to the Linux Business Unit, Janet held the
positions of Program Manager and Senior Development Manager in Product
Development. She was the Engineering Manager responsible for the first
enterprise-ready database to be ported to Linux.

After graduating with a BS degree in Accounting from the University of Florida,
Smith began her career with Arthur Andersen & Co. She joined Tandem
Computers in 1989 and held postions in Product Management and Technical
Support until 1994, when she joined Informix. Janet lives in the Bay Area with
her husband, Clark, and their little boss: daughter, Veronica.

I talked to Janet by e-mail in November 1998 to discuss Linux and Informix.

Marjorie: What event first brought Linux to your attention?

Janet: It was a response from our users, rather than an event, that brought
Linux to our attention. Our users, organized as the Informix International User

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

Group, make up an incredible collection of technical and business experts. They
know the capabilities of Informix products better than anyone in the world, and
we listen to their suggestions and respond to their requests.

Our users demanded the marriage of the efficient, feature-rich, “stealth” Linux
operating system and the scalability, performance and extensibility of Informix
database options. We delivered our first Linux products, INFORMIX-SE and
INFORMIX-ESQL/C, in July at the Informix Worldwide User Conference. The
response has been overwhelming.

Marjorie: What sort of evaluation procedures did you use to decide to support
Linux?

Janet: User demand drove our investment in Linux. We spoke with a number of
Linux users and a number of Informix users who were considering the Linux
OS. We came away with a strong understanding of three things:

• The Linux market is growing very rapidly.
• The Linux market needs a robust, high-performance, feature-rich

database.
• Informix has unique advantages that make it a perfect choice for the

Linux community.

We saw a tremendous opportunity and we moved quickly to provide the first
commercial database on Linux with our SE offering.

Marjorie: What advantages do you see in having products that support Linux?

Janet: First, it is important to understand that one of Informix's core business
strategies is developing strong partnerships. We have long-standing
relationships with our world-class VARs, ISVs, distributors, hardware partners
and customers. Businesses rely on applications built on technology from
Informix.

Linux allows our partners to move into new markets and provides a
significantly lower invoice cost for delivering solutions to customers. In addition
to being a “no-cost” operating system, it also provides for the excellent reuse of
hardware. This opens up opportunities and allows our partners to move their
solutions into new industries and markets—markets that Microsoft simply
doesn't address.

The growth of the Linux OS appears to cut across nearly every vertical market,
and it is gaining acceptance through every layer of the IT infrastructure.

Whether you are developing or deploying, the customer or the vendor, the VAR
or the hardware vendor, everybody wins. Linux is revolutionizing our industry.

Marjorie: What are the disadvantages?

Janet: Linux has tremendous momentum right now, and the challenge is to be
able to quickly respond to changes within the Linux community. There is still
some standardization necessary to create a truly ubiquitous operating
environment. As the first commercial vendor to deliver product on Linux, we
had to work through some of those issues. Informix supports the efforts of the
Linux Standards Board (LSB) and we know the Linux community is completely
committed to meeting their current standards of excellence today and in the
future.

Marjorie: What do you find most attractive about Linux?

Janet: The total cost of ownership is clearly one of the drivers within this
market. Linux allows a much larger range of applications to be built at a much
lower cost than previously imagined. Users and developers are looking for an
alternative to Windows NT.

Marjorie: How do you compare Linux with other operating systems?

Janet: The acceptance of Linux is so rapid and the passion of the community so
high that the same enterprise-wide tests available on other operating systems
will soon benefit Linux. In general, we have found Linux to be as reliable as
other UNIX platforms.

Marjorie: What other platforms do you support?

Janet: Informix products are available on UNIX, NT and Linux. Informix supports
all major UNIX platforms including Sun, HP, SGI, Sequent, IBM, Compaq/DEC,
Compaq/Tandem, SNI, UNIXware, Data General, Intel Solaris, NEC, Fujitsu, NCR
and Hitachi.

Marjorie: Do you plan to support Linux with all your products? If not, why not?

Janet: It is clear the Linux market needs Informix solutions, and we are
committed to the Linux platform. We plan on supporting Linux by providing the
Informix technology that addresses the needs of the market. Our web site, as
well as our Informix Developer Network, describes solutions that benefit the
Linux community. We will continue to make specific announcements regarding
our plans for delivering additional products on Linux.

Marjorie: Tell us about the products you have ported to Linux and why you
chose to port them to Linux first.

Janet: INFORMIX-SE and INFORMIX-ESQL/C are our first entrants into Linux,
because both are well-known and widely supported by our VARs and ISVs.
INFORMIX-SE is an enterprise database that is extremely fast, has a small
footprint, is easily embedded and requires virtually no configuration or
management.

Linux developers are able to embed INFORMIX-SE as part of their applications
without requiring their customers to hire a DBA to maintain and support the
deployed application. It enables current INFORMIX-SE developers to deploy
their applications on Linux and take advantage of Linux and the Apache Web
Server. INFORMIX-SE is a fabulous fit of a high-performance database with a
low-cost, low-maintenance web server.

INFORMIX-ESQL/C on Linux is for C developers building applications to access
an Informix database on any platform, including Linux. INFORMIX-ESQL/C on
Linux also enables developers with existing applications to easily port them to
Linux. It provides the convenience of entering SQL statements directly into the
C language source code. Developers can use SQL to issue commands to the
Informix server and to manage the result sets of data from queries. INFORMIX-
ESQL/C provides low-level control over the application for session management
and error handling and gives the developer direct access to all database
functions. INFORMIX-ESQL/C requires significantly less coding and is easier,
faster, more productive and less error-prone than low-level direct calls to
libraries.

Marjorie: Have you considered making any of your products Open Source?

Janet: Informix is committed to increasing developer participation in our
products and allowing developers to add value. So, we are looking at Open
Source and trying to understand which products might be appropriate within
that model. It is important to remember that Informix is already the most open
database available. Though not truly open source, our APIs give developers
powerful ways to extend the functionality of the database. We think that meets
the needs of the market today.

Marjorie: What do you think needs to be added to Linux to make it more
attractive to business users?

Janet: The availability of applications is what will drive Linux in the business
community. We are committed to working with our partners, VARs and ISVs to
make their applications available on Linux quickly.

Marjorie: Linux seems to be climbing rapidly in popularity with all the PR it has
gotten recently. How long do you expect that to last?

Janet: The growth rates posted are quite impressive, and prove Linux is not a
fad. The recent PR will only fuel the fire. We think Linux is here to stay.

Marjorie: What do you see in the future for your company and Linux?

Janet: The future for Informix and Linux is not only prosperous, but also fun.
We've just entered the Database Software Olympics and the Linux community
bestows the medals. Technology is the Informix playing field, the games have
begun, and we are going for gold.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/058/toc058.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

	Features
	News & Articles
	Reviews
	Columns
	Departments
	Strictly On-line
	COAS: A Flexible Approach to System Administration Tools
	Olaf Kirch
	Vertical Modularity
	Horizontal Modularity
	Data Model
	User Interaction
	What about Labels?
	Editing Data
	Where's the Beer? er, Beef?
	Are You Curious?

	Csound for Linux
	David Phillips
	Enter Linux
	Linux CSound: the Plot Thickens
	The CVS Repository
	The Csound UNIX/Linux Development Group
	The X Picture
	Cecilia
	Rain
	Adsyn
	Ceres2
	Rosegarden
	HPKComposer
	PatchWork
	SoundSpace
	Into the Future
	Final Words

	Hunting Hurricanes
	C. Wayne Wright
	Edward J. Walsh
	Background
	SRA System Description
	The Radar Components
	2ns PCI Waveform Digitizer, DOS,
GageScope
	Hardware Interrupts
	Microcontroller Board, 16c65a
	RT-Linux
	Shared Memory
	Linux Laptops
	GPS and RS-232 Aircraft Data
	Pitch, Roll, Heading and Track Angle
	Resulting Data (Radar, GPS, Aircraft)
	System Software Development
	Microcontroller Software Development
	RT-Linux
	Linux User to RT-Linux Interface
	Linux X Terminal—System Display and
Control
	TK, Blt, Xview
	Data Analysis—Yorick
	Results
	Bonnie
	Conclusion

	University of Toronto WearComp Linux Project
	Steve Mann
	Problem Statement
	Computer Science or Computer Secrecy
	Obvious or Obfuscated
	Environmental Intelligence Gathering
Systems
	Solution to Software Fascism
	Solution to Environmental Intelligence
Gathering
	Definition of WearComp
	WearComp, as Universal Interface to
Reality
	Personal Safety Device
	Camera of the Future
	Personal Intelligence Arms Race
	Future Directions

	Virtual Network Computing
	Brian Harvey
	VNC
	Installation
	Linux (VNC Viewer)
	Windows 95/NT (VNC Server)
	Configuration
	Using the Linux VNC viewer
	Advantages
	How I Use VNC

	Configuring ATM Networks
	Wayne J. Salamon
	Obtaining and Installing the Linux-ATM
Software
	Configuring the ATM Device Interface
	Configuration of Switched Virtual
Circuits
	Special Configuration for ENI-155p ATM
Cards
	Using IP over Permanent Virtual Circuits
	Testing the Connections
	Conclusion

	The GNOME Project
	Miguel de Icaza
	History of GNOME
	Red Hat Advanced Development Labs
	Other Donations
	Some Key GNOME Features
	Dissecting a GNOME Desktop Application
	Development model
	The GNOME Office Suite Applications
	Getting GNOME

	KDE: The Highway Ahead
	Kalle Dalheimer
	Planned Features for KDE 2.0
	Summary

	P-Synch
	Tim Parker

	The login Process
	Andy Vaught
	A Bit about the Shell
	How Does it All Get Started?
	A Synopsis of autologin

	Caching the Web, Part 2
	David Guerrero
	Squid Installation
	Restricting Access to Your Cache
	A Look at the Logs
	Configuring Browsers to Use Cache
	Joining a Hierarchy
	The Cache Manager
	Conclusions and Tips

	Creating a Web-based BBS, Part 2
	Reuven M. Lerner
	Creating a Thread with Cookies
	Working with Messages
	Posting the Message
	Viewing a Thread
	Summary

	Focus on Software
	David A. Bandel
	gtkcookie:
	guitar:
	gentoo:
	slashes.pl:
	The Gaby Address Book of Yesterday:
	The Amazing Anagram Thingie:
	Ministry of Truth:

	Letters to the Editor
	Various
	Applixware 4.4.1
	Erratum in LJ February
1998
	Answer to User's Question
	Eiffel, Design by Contract
	Linux Installation and the Open Source
Process
	Happy Hacking Keyboard Price
	BTS Correction
	Linux Journal and Red
Hat
	VFS Error Messages
	Real Life Business Story
	Review of Learning the Bash
Shell
	Re: CIDR

	More Letters to the Editor
	BTS: Re: Netscape Mail article Dec 1998
	Re: Netscape Mail
	Midnight Commander
	Subnetting Table
	Funny attitude
	IDG/LinuxWorld Expo alienates speakers?
	ATI video cards
	Linux on Macintosh
	Stone Age hardware in PC
	Choosing between VI and World Domination
	Corel WP for Linux.. Very nice :-)
	Macsyma - yet another company that ported its product to Linux
	MkLinux,LinuxPPC,Turbo and Debian
	BTS
	Re: BTS Shutting Down
	BTS: GNU wget for updating web site
	Consistency vital to growth of Linux

	Software Libre and Commercial Viability
	Alessandro Rubini
	Viability for Individual Consultants
	Viability for Support Companies
	Viability for Education Centers
	Social Issues
	Limits of the Free Software Model

	Announcements by Sun and Troll Tech
	Marjorie Richardson
	UltraSPARC
	Java Licensing
	Troll Tech

	Best of Technical Support
	Various
	Pre-installed Slackware
	Software in RPMs
	a.out
	Disk Space
	Relaying E-mail
	Digital UNIX Gateway?
	Typing Spanish Characters
	Migrating from Windows
	Alternatives to X

	New Products
	Ellen Dahl
	iHTML Merchant 2.0
	Auto-Changer
	JetStor RAID
	VariCAD 7.0-1.0
	MetaCard 2.2
	Macsyma 421 for Linux
	HP Firehunter Supports Linux
	PlanetUplink
	NetTracker 3.5 and Webmaster 3.0
	ICE.PPN
	O2 Object Database Management System
	Quant-X and Altera SQL Server version
2.0
	Linux Edition of Ingres II
	Thin Client PC X Server

	Color Reactiveness on the Desktop
	Bowie Poag
	Descriptions of Color-Reactive Elements
	Beacons
	Methodology
	Implementation
	Other Examples
	Behavior
	Conclusion
	Update

	Book Review: Building Network Management Tools with Tcl/Tk
	Syd Logan
	Book Content
	Obtaining the Source Code
	Overall Impression

	LJ Interviews Informix's Janet Smith
	Marjorie Richardson

